• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE EFFECT OF POTASSIUM ON THE KINETICS OF THE CHAR/WATER AND CHAR/CARBON DIOXIDE REACTIONS

Sams, David Alan January 1982 (has links)
No description available.
2

THE KINETICS AND MECHANISM OF THE POTASSIUM-CATALYZED CARBON/CARBON DIOXIDE GASIFICATION REACTION.

SAMS, DAVID ALAN. January 1985 (has links)
The catalytic effect of potassium on the rate of CO₂ gasification of a bituminous coal char and a pure carbon substrate is investigated. The gasification rate depends on both the catalyst concentration (K/C atomic ratio) and the internal porous structure of the solid. For low values of the K/C atomic ratio, the initial gasification rate (mg carbon gasified per initial gram carbon per min) increases sharply with the addition of catalyst; at higher values, the rate profile levels off. The sharp increase in rate is due to the activation of reaction sites while the plateau is attributed to the saturation of the surface with active sites. The variation of the instantaneous gasification rate (based on remaining carbon) with carbon conversion at various initial K/C ratios is studied. The important reasons for the change in rate are the change in the solid surface area, the loss of active sites, the loss of catalyst by vaporization and the change in the K/C ratio due to carbon depletion. The loss of catalyst from the pure carbon substrate by vaporization is also determined. The extent of this loss depends primarily on the reaction start-up procedure. Temperature programmed experiments show that under inert atmospheres, both KOH and K₂CO₃ react with carbon to give a reduced form of the catalyst which appears to be a prerequisite for the rapid vaporization of potassium. The effect of catalyst loss on both the initial gasification rate and the variation in rate with conversion is determined. The reaction mechanism is studied by a temperature and concentration programmed reaction technique. The proposed redox mechanism contains three surface complexes: -CO₂K, -COK and -CK. The oxide groups are the intermediates during C/CO₂ gasification. The completely reduced form, -CK, is the end product of catalyst reduction and is the precursor for K loss. The stoichiometries of these surface groups are confirmed by oxygen and potassium balance.

Page generated in 0.0469 seconds