• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Observations on the growth and development of stolons of S. tuberosum cultured in vitro

McCorquodale, I. A. January 1971 (has links)
No description available.
2

Cis-elements and trans-acting factors of the patatin promoter

Zourelidou, Melina January 1997 (has links)
No description available.
3

Hodnocení variability proteinů mezi orgány druhu Solanum tuberosum L. / Evaluation of protein variability among plant organs of Solanum tuberosum L.

ŠMÍDOVÁ, Michaela January 2007 (has links)
The aim of the contritbution was to study potato (Solanum tuberosum L.) tuber protein concentration during growing season in dependence on actual ontogenesis stage of the potato plant. The changes in tuber protein concentration were studied on two potato cultivars - Adora (very early maturing) and Bionta (late maturing). The trial was established under field conditions on the site České Budějovice (380 m). Continuous ore sampling was aimed at following parameters evaluation: average tuber weight, dry matter concentration, crude protein concentration and protein concentration. Early maturing cultivar Adora showed rapid increasing of biomass from the start of ontogenesis and at the same time rapid decreasing of nitrogen compounds and pure protein concentration. The late maturing cultivar Bionta showed much more slow formation of biomass however the decreasing of nitrogen compounds and pure protein concentration was also recorded. Significant effect of ontogenesis stage on crude as well as pure protein concentration was evaluated. Significant effect on crude and pure protein concentration had also cultivar.
4

Uptake and partitioning of cadmium in two cultivars of potato ( Solanum tuberosum L. )

Dunbar, Kelly R. January 2004 (has links)
This thesis presents the results of an investigation into the uptake and distribution of cadmium (Cd) in two cultivars of potato (Solanum tuberosum L.) shown to contain different concentrations of Cd in the tuber at maturity. An initial glasshouse trial sought to determine whether differences in tuber Cd between these two cultivars resulted from differences in uptake from the soil, or were due to differences in the allocation of Cd to the various tissues within the plant. Total uptake of Cd from the soil did not differ between cultivars, nor did the yield of tubers. However, there were marked differences in Cd distribution within the plant. Most of the differences in tuber Cd concentration could be accounted for by a large (3-fold) retention of Cd in the roots of cultivar Wilwash. The concentration of Cd in the shoots of Wilwash was also higher than of Kennebec, although to a lesser extent than the roots. Further studies were conducted to trace the pathways of Cd uptake and movement within the plant. A split-pot trial, involving long-term growth of potatoes in 109Cd-labelled soil, was undertaken to determine the overall pattern of Cd distribution and the importance of the root system in supplying Cd to the tubers. The root system of the potato plant is different to many plants, in that the main root system (basal roots) is augmented after tuber initiation by roots extending from the stolon and from the tuber itself. The basal roots were found to be the dominant source of Cd to all tissues and accounted for approximately 85 % of tuber Cd. The remaining tuber Cd was sourced directly from the stolon and tuber roots. However, there was no evidence of a direct link between the main (basal) root system and the stolons. Although Cd was found to accumulate in the periderm of the tubers, there was no uptake into the tuber tissue itself. Isotopic studies were undertaken to investigate the short-term movement of newly absorbed Cd in the xylem and the phloem. Cadmium was found to be highly mobile in both the xylem and phloem, with added Cd being rapidly assimilated into all tissues following both root and foliar application. Newly absorbed Cd was rapidly sequestered by the stems when applied to either the soil or to a source leaf, suggesting that the stems may act as a transitional storage pool when rapid turnover of nutrients and other mineral elements is required during tuber bulking. Inhibition of Cd uptake by zinc (Zn), has been proposed as a method for reducing the concentration of Cd in various agricultural crops, including potatoes. The ability of Zn to reduce Cd uptake was found to be highly dependent upon cultivar and on the concentration of Cd in the external medium. Although competition between Zn and Cd was found for cultivar Wilwash when the external concentration of Cd was low, when the concentration of Cd in the external media was high, increasing Zn served to increase Cd uptake. Both synergistic and competitive responses were also noted for cultivar Kennebec. However, the patterns of response were opposite to those evident in Wilwash. The complexity of these interactions highlighted the possible shortcomings in using soil applied Zn to limit Cd uptake by potatoes. / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2004.
5

Uptake and partitioning of cadmium in two cultivars of potato ( Solanum tuberosum L. )

Dunbar, Kelly R. January 2004 (has links)
This thesis presents the results of an investigation into the uptake and distribution of cadmium (Cd) in two cultivars of potato (Solanum tuberosum L.) shown to contain different concentrations of Cd in the tuber at maturity. An initial glasshouse trial sought to determine whether differences in tuber Cd between these two cultivars resulted from differences in uptake from the soil, or were due to differences in the allocation of Cd to the various tissues within the plant. Total uptake of Cd from the soil did not differ between cultivars, nor did the yield of tubers. However, there were marked differences in Cd distribution within the plant. Most of the differences in tuber Cd concentration could be accounted for by a large (3-fold) retention of Cd in the roots of cultivar Wilwash. The concentration of Cd in the shoots of Wilwash was also higher than of Kennebec, although to a lesser extent than the roots. Further studies were conducted to trace the pathways of Cd uptake and movement within the plant. A split-pot trial, involving long-term growth of potatoes in 109Cd-labelled soil, was undertaken to determine the overall pattern of Cd distribution and the importance of the root system in supplying Cd to the tubers. The root system of the potato plant is different to many plants, in that the main root system (basal roots) is augmented after tuber initiation by roots extending from the stolon and from the tuber itself. The basal roots were found to be the dominant source of Cd to all tissues and accounted for approximately 85 % of tuber Cd. The remaining tuber Cd was sourced directly from the stolon and tuber roots. However, there was no evidence of a direct link between the main (basal) root system and the stolons. Although Cd was found to accumulate in the periderm of the tubers, there was no uptake into the tuber tissue itself. Isotopic studies were undertaken to investigate the short-term movement of newly absorbed Cd in the xylem and the phloem. Cadmium was found to be highly mobile in both the xylem and phloem, with added Cd being rapidly assimilated into all tissues following both root and foliar application. Newly absorbed Cd was rapidly sequestered by the stems when applied to either the soil or to a source leaf, suggesting that the stems may act as a transitional storage pool when rapid turnover of nutrients and other mineral elements is required during tuber bulking. Inhibition of Cd uptake by zinc (Zn), has been proposed as a method for reducing the concentration of Cd in various agricultural crops, including potatoes. The ability of Zn to reduce Cd uptake was found to be highly dependent upon cultivar and on the concentration of Cd in the external medium. Although competition between Zn and Cd was found for cultivar Wilwash when the external concentration of Cd was low, when the concentration of Cd in the external media was high, increasing Zn served to increase Cd uptake. Both synergistic and competitive responses were also noted for cultivar Kennebec. However, the patterns of response were opposite to those evident in Wilwash. The complexity of these interactions highlighted the possible shortcomings in using soil applied Zn to limit Cd uptake by potatoes. / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2004.
6

Uptake and partitioning of cadmium in two cultivars of potato ( Solanum tuberosum L. )

Dunbar, Kelly R. January 2004 (has links)
This thesis presents the results of an investigation into the uptake and distribution of cadmium (Cd) in two cultivars of potato (Solanum tuberosum L.) shown to contain different concentrations of Cd in the tuber at maturity. An initial glasshouse trial sought to determine whether differences in tuber Cd between these two cultivars resulted from differences in uptake from the soil, or were due to differences in the allocation of Cd to the various tissues within the plant. Total uptake of Cd from the soil did not differ between cultivars, nor did the yield of tubers. However, there were marked differences in Cd distribution within the plant. Most of the differences in tuber Cd concentration could be accounted for by a large (3-fold) retention of Cd in the roots of cultivar Wilwash. The concentration of Cd in the shoots of Wilwash was also higher than of Kennebec, although to a lesser extent than the roots. Further studies were conducted to trace the pathways of Cd uptake and movement within the plant. A split-pot trial, involving long-term growth of potatoes in 109Cd-labelled soil, was undertaken to determine the overall pattern of Cd distribution and the importance of the root system in supplying Cd to the tubers. The root system of the potato plant is different to many plants, in that the main root system (basal roots) is augmented after tuber initiation by roots extending from the stolon and from the tuber itself. The basal roots were found to be the dominant source of Cd to all tissues and accounted for approximately 85 % of tuber Cd. The remaining tuber Cd was sourced directly from the stolon and tuber roots. However, there was no evidence of a direct link between the main (basal) root system and the stolons. Although Cd was found to accumulate in the periderm of the tubers, there was no uptake into the tuber tissue itself. Isotopic studies were undertaken to investigate the short-term movement of newly absorbed Cd in the xylem and the phloem. Cadmium was found to be highly mobile in both the xylem and phloem, with added Cd being rapidly assimilated into all tissues following both root and foliar application. Newly absorbed Cd was rapidly sequestered by the stems when applied to either the soil or to a source leaf, suggesting that the stems may act as a transitional storage pool when rapid turnover of nutrients and other mineral elements is required during tuber bulking. Inhibition of Cd uptake by zinc (Zn), has been proposed as a method for reducing the concentration of Cd in various agricultural crops, including potatoes. The ability of Zn to reduce Cd uptake was found to be highly dependent upon cultivar and on the concentration of Cd in the external medium. Although competition between Zn and Cd was found for cultivar Wilwash when the external concentration of Cd was low, when the concentration of Cd in the external media was high, increasing Zn served to increase Cd uptake. Both synergistic and competitive responses were also noted for cultivar Kennebec. However, the patterns of response were opposite to those evident in Wilwash. The complexity of these interactions highlighted the possible shortcomings in using soil applied Zn to limit Cd uptake by potatoes. / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2004.
7

GC-TOF-MS basierte Analyse von niedermolekularen Primär- und Sekundärmetaboliten agrarwirtschaftlich bedeutsamer Nutzpflanzen / GC-TOF-MS based metabolite profiling of low molecular weight primary and secondary metabolites of agricultural meaningful crops

Strehmel, Nadine January 2010 (has links)
Die Qualität von Nutzpflanzen ist von zahlreichen Einflussfaktoren wie beispielsweise Lagerbedingungen und Sorteneigenschaften abhängig. Um Qualitätsmängel zu minimieren und Absatzchancen von Nutzpflanzen zu steigern sind umfangreiche Analysen hinsichtlich ihrer stofflichen Zusammensetzung notwendig. Chromatographische Techniken gekoppelt an ein Massenspektrometer und die Kernspinresonanzspektroskopie wurden dafür bislang verwendet. In der vorliegenden Arbeit wurde ein Gaschromatograph an ein Flugzeitmassenspektrometer (GC-TOF-MS) gekoppelt, um physiologische Prozesse bzw. Eigenschaften (die Schwarzfleckigkeit, die Chipsbräunung, das Physiologische Alter und die Keimhemmung) von Nutzpflanzen aufzuklären. Als Pflanzenmodell wurde dafür die Kartoffelknolle verwendet. Dazu wurden neue analytische Lösungsansätze entwickelt, die eine zielgerichtete Auswertung einer Vielzahl von Proben, die Etablierung einer umfangreichen Referenzspektrenbibliothek und die sichere Archivierung aller experimentellen Daten umfassen. Das Verfahren der Probenvorbereitung wurde soweit modifiziert, dass gering konzentrierte Substanzen mittels GC-TOF-MS analysiert werden können. Dadurch wurde das durch die Probenvorbereitung limitierte Substanzspektrum erweitert. Anhand dieser Lösungsansätze wurden physiologisch relevante Stoffwechselprodukte identifiziert, welche indikativ (klassifizierend) bzw. prädiktiv (vorhersagend) für die physiologischen Prozesse sind. Für die Schwarzfleckigkeitsneigung und die Chipseignung wurde jeweils ein biochemisches Modell zur Vorhersage dieser Prozesse aufgestellt und auf eine Züchtungspopulation übertragen. Ferner wurden für die Schwarzfleckigkeit Stoffwechselprodukte des Respirationsstoffwechsels identifiziert sowie Aminosäuren, Glycerollipide und Phenylpropanoide für das Physiologische Alter als relevant erachtet. Das physiologische Altern konnte durch die Anwendung höherer Temperaturen beschleunigt werden. Durch Anwendung von Keimhemmern (Kümmelöl, Chlorpropham) wurde eine Verzögerung des physiologischen Alterns beobachtet. Die Applikation von Kümmelöl erwies sich dabei als besonders vorteilhaft. Kümmelöl behandelte Knollen wiesen im Vergleich zu unbehandelten Knollen nur Veränderungen im Aminosäure-, Zucker- und Sekundärstoffwechsel auf. Chlorpropham behandelte Knollen wiesen einen ähnlichen Stoffwechsel wie die unbehandelten Knollen auf. Für die bislang noch nicht identifizierten Stoffwechselprodukte wurden im Rahmen dieser Arbeit das Verfahren der „gezielten An-/Abreicherung“, der „gepaarten NMR/GC-TOF-MS Analyse“ und das „Entscheidungsbaumverfahren“ entwickelt. Diese ermöglichen eine Klassifizierung von GC-MS Signalen im Hinblick auf ihre chemische Funktionalität. Das Verfahren der gekoppelten NMR/GC-TOF-MS Analyse erwies sich dabei als besonders erfolgversprechend, da es eine Aufklärung bislang unbekannter gaschromatographischer Signale ermöglicht. In der vorliegenden Arbeit wurden neue Stoffwechselprodukte in der Kartoffelknolle identifiziert, wodurch ein wertvoller Beitrag zur Analytik der Metabolomik geleistet wurde. / Several factors influence the quality of crops. These include particular storage conditions and cultivar properties. Minimization of quality defects requires the employment of comprehensive metabolic analysis to enhance the marketing potential of crops. From this point of view chromatographic techniques coupled either with a mass spectrometer or the combination with nuclear magnetic resonance spectroscopy have been successfully applied to solve the main tasks. In the present work, a gas chromatograph was coupled to a time of flight mass spectrometer (GC-TOF-MS) to analyze physiological processes and attitudes of crops like black spot bruising, chips tanning, physiological aging, and sprouting inhibition. For this purpose the potato tuber was employed as a model plant. Therefore, new analytical approaches were developed comprising the targeted analysis of a multitude of samples, the establishment of a comprehensive mass spectral reference library and the built up of a secure archival storage system. Furthermore, the sample preparation protocol was modified to analyze trace components with the help of GC-TOF-MS as well. This helped to extend the discovery of more endogenous metabolites. These analytical approaches were required to identify physiological relevant indicative and predictive metabolites. Consequently, a biochemical model was build up for the process of black spot bruising and chips tanning respectively. These models could be applied to an unknown breeding progeny. Metabolites of the respiratory chain were identified as relevant for the process of black spot bruising whereas amino acids, lipids and phenylpropanoids were of high importance for the process of physiological aging.  The process of physiological aging could be accelerated while applying higher temperatures and could be delayed while applying sprouting inhibitors, like caraway oil and chlorpropham. Compared to chlorpropham, caraway oil exhibited more advantages with respect to storage attitudes although it caused significant changes in the amino acid, sugar and secondary metabolism during a common storage period. However, the chlorpropham treated tubers showed a similar phenotype in comparison to the control tubers. In addition, several methods were developed with respect to the classification of yet unidentified signals. These cover the decision tree process, the targeted enrichment and depletion of specific metabolites with the help of solid phase extraction and the paired NMR and GC-MS analyses. The paired NMR and GC-MS analysis appears very promising because it allows for the identification of unknown GC-MS signals. Thus, this work makes a valuable contribution to the analytics of the metabolome, as new metabolites could be identified which are of physiological relevance for the potato tuber.
8

Germline transformation and isolation of midgut related genes from the potato tuber moth, Phthoramiaea operculella, (Lepidoptera: Gelechiidae).

Mohammed, Ahmed Mohammed Ahmed 15 November 2004 (has links)
Potato production in tropical and subtropical countries suffers from damage caused by the potato tuber moth (PTM), Phthorimiaea operculella. Development of a germline transformation system and the identification of genes that are differentially expressed within the PTM midgut are the main goals of this research. We tested three components that are critical to genetic transformation systems for insects; promoter activity, marker gene expression, and transposable element function. We compared the transcriptional activities of five different promoters, hsp70, hsp82, actin5C, polyubiquitin and ie1, within PTM embryos. The ie1 promoter flanked with the enhancer element, hr5, showed a very high level of transcriptional activity compared with the other promoters. The expression of the enhanced green fluorescent protein (EGFP) was detected under UV-illumination within the embryonic soma demonstrating that it can be used as an effective marker gene for PTM. The transpositional activities of the Hermes, mariner and piggyBac transposable elements were tested in interplasmid transposition assays. The piggyBac element was shown mobile within the embryonic soma with a transposition frequency of 4.2 X 10-5 transposition/donor plasmid. The piggyBac mobility has been enhanced by incorporating a transactivator plasmid expressing the IE1 protein from the bacoluvirus Autographa californica nuclear polyhedrosis virus. Seven transformation experiments were performed. The experiments failed to produce a transgenic PTM. The insect midgut is a rich region of molecular targets involved in food processing that could be potentially used to design a new control strategy. The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes from the PTM midgut. From this subtracted library, 2984 clones were collected and screened. Of these clones, 637 clones are candidate differentially expressed genes within the PTM midgut. Sixty-nine cDNA clones were randomly selected for DNA sequencing. Tweleve clones were selected for further analysis using RT-PCR and Northern blot techniques. Eleven of the clones resulted in positive results for midgut expression. Five clones, showing homology with insect immune peptides, were used in the challenge experiment which revealed that these cDNAs are constitutively expressed in the midgut, as well as being up-regulated due to bacterial or viral challenge.
9

The potato tuber moth, Phthorimaea operculella (Zeller), in South Africa: potential control in non-refrigerated store environments

Visser, Diedrich 20 May 2005 (has links)
Please read the abstract in the section 00front of this document. Also note that an abstract is provided for each chapter as well / Thesis (DPhil (Entomology))--University of Pretoria, 2005. / Zoology and Entomology / unrestricted
10

Analyse de l’évolution des populations du granulovirus PhopGV en contact avec des hôtes alternatifs Phthorimaea operculella et Tecia solanivora (Lepidoptera gelechiidae) / Analysis of the evolution of granulovirus populations PhopGV in contact with alternative hosts Phthorimaea operculella and Tecia solanivora (Lepidoptera gelechiidae)

Espinel-Correal, Carlos 17 December 2010 (has links)
Les invasions biologiques sont un fardeau économique important si elles affectent des ressources critiques pour l’alimentation, la sante humaine ou les productions agricoles. Les ravageurs de la pomme de terre sont un challenge économique important tant ce tubercule est un aliment clé dans les pays andins. Il est possible de suivre la dispersion récente de la teigne du Guatemala, T. solanivora en Amérique du Sud depuis son introduction au Vénézuela à sa propagation progressive vers le sud. Par ailleurs, les invasions récentes fournissent un modèle unique pour analyser les processus d’adaptation de tout l’écosystème receveur au nouveau venu. Cette introduction de T. solanivora et sa coexistence avec la teigne endémique Phthorimaea operculella, nous offre la possibilité d’étudier l’adaptation de populations virales inféodées à P. operculella au nouvel hôte T. solanivora. Une étude de terrain a été engagée dans les régions productrices de pomme de terre en Colombie. A partir des larves de T. solanivora collectées sur 5 sites distincts, des infections à granulovirus ont été détectées. Tous les isolats viraux sont apparentés au Phthorimaea operculella granulovirus (PhopGV) précédemment décrit. Des différences de pathogénicité envers les deux hôtes ont été observées. Une variabilité a été détectée pour certains isolats au niveau de deux marqueurs génétiques. Les populations présentant une diversité génétique s’avèrent plus pathogènes sur les deux hôtes que des populations génétiquement homogènes. Elles offrent une opportunité pour le contrôle biologique de ces ravageurs. Des populations artificielles ont été construites pour mimer des populations naturelles mélangées. Elles se comportent de la même manière d’un point de vue biologique, mais l’évolution de la fréquence des marqueurs n’est pas liée à l’efficacité biologique, ce qui suggère que des différences non détectées dans le génome pourraient être responsables de l’adaptation de l’hôte. La productivité des infections dans les deux hôtes a été étudiée car elle est la clé de voute du développement d’un agent de contrôle biologique. Les productivités sur P. operculella (1,36 à 2,69 × 108 OBs/ mg) et T. solanivora (0,48 à 3,64 × 108 OBs/mg) ne sont pas très différentes. Les populations génétiquement mélangées ne se distinguent pas des populations homogènes par leur production totale dans l’un ou l’autre des deux hôtes, cependant, les rendements (production virale/inoculum) montrent des différences claires, les populations mélangées (naturelles ou artificielles) sont plus performantes sur les deux hôtes. Aucune réduction de la pathogénicité sur l’hôte d’origine n’a été observée après plusieurs cycles de réplication de la population virale sur l’hôte alternatif. Les populations virales originellement adaptées à P. operculella ont évolué pour infecter T. solanivora. Dans les régions où les deux hôtes sont présents, les populations virales développent une stratégie pour être efficaces sur les deux hôtes. / Biological invasions constitute an important economical burden when they affect key resources for human alimentation, health or agronomic productions. Potato pests are important as this tuber is a key food source in Andean countries. The recent dispersion of the Guatemalan potato tuber moth, T. solanivora in South America can be traced back to the introduction in Venezuela, with progressive dispersion towards the South. Recent invasions provide, in addition, a unique model to analyse the process of adaptation of the whole receiving ecosystem to the new comers. This introduction of T. solanivora and its coexistence with the endemic potato tuber moth, Phthorimaea operculella offer us the possibility of studying the adaptation to T. solanivora of virus populations infeodated to the later. A survey has been carried out in the potato-producing regions of Colombia. From the T. solanivora larvae collected, granulovirus infections were detected in five different locations. All virus isolates are related to the previously described Phthorimaea operculella granulovirus (PhopGV). Differences in the pathogenicity against the two hosts were observed. Variability was detected in some isolates at two genetic markers. Genetically diverse populations appear to be more pathogenic for both hosts than genetically homogeneous populations. They provide a possible solution for the biological control of these insect pests. Artificial populations were constructed to mimic the mixed natural populations. They behave similarly from a biological point of view, but the evolution of the markers frequencies is not related to the biological efficacy, suggesting that undetected differences in the genomes could be responsible of this host adaptation. The productivity of the infections in both hosts has been studied as it constitutes a key point for the development of a biocontrol agent. The productivity in P. operculella (1.36 to 2.69 × 108 OBs/ mg) and T. solanivora (0.48 to 3.64 × 108 OBs/mg) are not very different. Genotypically mixed populations cannot be differentiated from homogeneous populations by their total production in one or the other host, however, the yields (virus output/doses to infect) show clear differences, mixed populations (natural or artificial) perform better in both hosts. No reduction in the pathogenicity for one host was observed after few cycles of replication of the virus population in the second host. Virus populations originally adapted to P. operculella had evolved to infect T. solanivora. In regions where both host are present, the populations developed a strategy to be efficient on both hosts.

Page generated in 0.0687 seconds