• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling broiler populations for purposes of optimisation.

Berhe, Esayas Tesfasellassie. January 2008 (has links)
With the narrow margin of profit in the broiler enterprise, how can producers increase profit potential? It is not an easy task to answer this question since the net financial return depends on many factors; some are related to the animal, some to the feed, some to the environment and others are outside the production system, like availability and cost of labour and capital. Many researchers have attempted to improve the efficiency of the system using alternative management strategies and to develop a unified theory that could simultaneously evaluate all the relevant factors and the interactions between them. Simulation models are seen as the most promising means of moving this subject forward. Geneticists are continually improving the potential growth rate of broilers, yet there has been little change in feed specifications for these birds over the past few decades. Only recently has it been possible to make use of simulation models to optimise the feeds and feeding programs of modern broiler strains at a commercial level, but little testing of these programs has been carried out. What is needed is a thorough investigation of these models, which at present are based on an individual, as opposed to a population response. Modelling plays an increasingly important part in animal science and research as a way of organizing and evaluating the large body of existing knowledge. With the use of an accurate description of the potential growth rates of broiler genotypes, it is possible to make more efficient use of growth models which are becoming more abundant in the industry and which, in turn, enable the nutritionist or producer to predict the performance of animals when subjected to a given feed or feeding programme. The predictions made by most of the growth models now available are based on individual animals, and the results obtained may be inadequate in optimising the nutrient requirements of a broiler population because of the variation that exists in these populations. Variation in performance traits in broilers may be the result of variation in the genotype, in the environmental conditions within the house, and in the composition of the feed offered to the birds, and these sources of variation cannot all be accommodated in a model that simulates the food intake and growth of just one bird. But if variation is to be incorporated into growth models, it is necessary to ascertain the effects of variation in the various genetic parameters on the mean response of the population. A sensitivity analysis is useful in accomplishing this objective. Similarly, it is important to know what the optimum size of a simulated population should be, that takes account both of the accuracy of the simulation and the time taken to complete the exercise. This is especially important when optimisation routines are followed, as such calculations are time consuming. As a means of addressing these issues, simulation exercises were conducted using EFG Broiler Growth Model version 6 and EFG Broiler Optimiser Model version 1 (EFG Software, 2006) to determine: (a) whether it is worth generating a population when optimising feeds and feeding programs for broilers, rather than using the average individual, (b) the size of the population required to obtain an accurate estimate of the population response when optimising the feeding program for different objective functions, (c) the effect of changing the value of genetic parameters such as mature protein weight, rate of maturing, feathering rate and the maximum lipid:protein ratio in the gain on the optimum amino acid contents and nutrient densities of broiler feeds, and (d) the effect of variation in nutrient composition of different batches of feed, which have the same nutrient profile but different qualities of the main protein source, on broiler performance. A review of sources of variation in the nutrient content of poultry feed was conducted, and simulation exercises were carried out to determine to what extent broiler performance is affected by the segregation or breakage of pellets into small pieces at the time of delivery and along the feed conveyor within the broiler house, by the change in nutrient quality that might occur along the conveyor, and by the microclimates that develop in a longitudinally ventilated broiler house. The tendency in broiler marketing in most parts of the world is to sell broilers cut up, as portions or deboned after evisceration, rather than selling whole birds. Estimation of the growth rates of carcass parts is therefore of considerable importance if simulation models are to be useful in optimising the feeds and feeding programmes of broilers under different conditions. Allometric equations are used in the EFG broiler growth model to predict the weights of these carcass parts from the weight of body protein at the time. These equations are based on data collected many years ago, and it would be useful to determine whether they are still relevant in the face of announcements by the major broiler breeding companies that tremendous strides have been made in improving breast meat yield, for example, by judicious selection. For the purpose of this investigation it was important to determine to what extent the weights of the physical parts varied at the same body protein weight, thereby enabling a more accurate estimation of the variation that could be expected in these weights when developing a population response model. Towards this end, experiments were conducted to determine the effect of dietary protein content on the performance of Cobb and Ross broilers, including mortality and uniformity, and on the allometric relationships between the physical and chemical components of the body and body protein. The overall objective of these exercises was to address issues relating to the use of simulation models in predicting food intake and growth of broilers, in optimising the amino acid contents and nutrient densities of feeds for broilers, and in representing a population of broilers when the performance of only one bird is simulated at a time. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
2

A dynamic mechanistic anaylsis of the thermal interaction between a broiler chicken and its surrounding environment.

January 2010 (has links)
Chickens, being open thermodynamic systems, maintain a constant exchange of energy and matter with their surrounding environment. In order to avoid reaching thermodynamic equilibrium with the environment the bird makes use of homeostatic mechanisms. These ensure the reduction of the entropy of the system to values that guarantee its integrality. The thermoregulatory response is a major component of the homeostatic machinery of living systems. This induces modifications of physiological parameters of the bird, taking the system “bird” to a new steady state. The achievement of this new state is possible only if the thermoregulatory mechanisms of the birds are able to counteract the environmental demand/burden. A successful thermoregulatory response depends not only on the achievement of that steady state, but also on the compatibility of the value of those parameters with life (especially regarding the value achieved by body temperature) as well as on the time of exposure to the environmental perturbation. Based on those premises, this thesis presents a mechanistic analysis of the thermal interaction between a broiler and its surroundings. The first section of the document introduces the reader to the general concepts of thermodynamics of living systems and physics of heat exchange. The second use mechanistic simulation techniques to represent the environment, the thermal and thermoregulatory properties of a broiler chicken and the interaction between bird and environment. Finally, the third section describes a conceptual simulation model able to predict, over a given period of time, the response of a bird to environmental conditions above those associated with least thermoregulatory effort. Various simulation exercises are reported, the objectives being to study the behaviour of certain variables and to question the validity of current theories of thermoregulation in environmental physiology. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
3

Modelling nutrient responses and performance of broiler breeders after sexual maturity.

Nonis, Magalie Kathy. January 2007 (has links)
With the worldwide increase in consumption of poultry meat in recent years, the production of hatchable eggs from broiler breeding stock has become a critically important component of the poultry industry. Surprisingly, a perusal of the literature pertaining to broiler breeder nutrition leads to the conclusion that research nutritionists have neglected these birds. It has been assumed in many cases that the research on laying hens is applicable to broiler breeders. However, fundamental differences are apparent between the two strains that should be investigated more comprehensively if the potential of broiler breeder hens is to be achieved. Commercial laying hens have been selected predominantly for increased egg production whereas broilers have been selected for early rapid growth rate. By selecting for improved growth rate, both food consumption and mature weight of these birds has increased (Reddy, 1996), but because of the negative genetic correlation between body weight and egg production (Robinson et al, 1993) reproductive performance has not been improved. Broiler breeder hens differ from commercial laying hens, by their non-normal frequency distribution of egg outputs, their considerable lipid reserves, and by the fact that many do not lay in closed cycle. The practice of restricting feed intake during both the rearing and laying periods has become a standard management procedure in commercial broiler breeder operations and this differs from the manner in which commercial hens are fed. This raises important issues regarding the requirements of these birds for energy, amino acids and other essential nutrients, as the birds do not have the opportunity of meeting their nutrient requirements by adjusting food intake upwards when one or more of these nutrients is deficient in the feed. It is the duty of the nutritionist to provide the correct daily allowance of each nutrient in order to achieve maximum egg output by the flock, but given the variation between hens within a flock, such decisions need to be made on both biological and economic grounds. Improved strains are continually being produced by breeder companies, which exhibit better growth, feed efficiency and productivity. The way in which broiler breeder hens were fed in the past might not be the most effective way to feed the latest strains. Getting the right amount of feed with the right nutrient levels at the right time is the most important part of feeding broiler breeders, and to succeed their daily nutrient requirements need to be known. Information concerning the nutritional requirements of broiler breeder hens is limited in comparison to other types of domesticated poultry. However, enough information is available concerning energy and amino acid nutrition of this type of poultry to enable one to develop models useful for constructing accurate feeding programmes. The most appropriate way of estimating the nutrient requirement of broiler breeder hens during the laying period, or of optimising a feeding strategy, is by the use of simulation models. Emmans and Fisher (1986) suggested that a better approach to the problem of describing requirements and of expressing them quantitatively can be achieved by considering: firstly, the bird’s characteristics, secondly by defining resource scales carefully and thirdly by considering the quantities of each resource needed per unit of function. This approach has a greater chance of success than attempting to measure requirements by direct experimentation. Energy and amino acids are required for growth of tissues, egg production, maintaining normal body temperature, vital life functions and activity. For development of feeding programmes, we are most concerned with the three primary components, maintenance, growth and egg output. There are a number of factors that impact on the total nutrient requirement of the breeder. The maintenance component is affected by body size, environmental temperature, level of activity (housed in floor pens vs. cages) and possibly breed. Regarding the growth component, in the case of broiler breeders during lay the composition of growth needs to be addressed: whether this is only lipid gain or also includes protein gain. Lastly, the egg component is influenced by egg mass and hen age. In order to calculate energy and amino acid requirements, one must have knowledge of the requirements per unit of body protein weight, growth rate and egg mass. By continually monitoring the environmental conditions in the broiler breeder house, as well as body weight, egg weight and egg number, it is possible to estimate the state of the hens at any time and hence the optimum nutrient concentrations that should be fed the next day of the laying period by using the Breeder Model presented in this thesis. Optimising the feeding of broiler breeders during the laying period is made difficult because of the many interacting factors influencing their performance All the hens are not the same, they are not housed in the same environments, and the costs of feeding and the revenue derived from the sale of the product differs from one locality to another. The solution to this problem lies in the use of simulation models to describe the causal relationship between inputs and the predicted responses. This thesis explored new concepts and components for a simulation model to predict the nutrient requirement and performance of broiler breeders after sexual maturity. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
4

Predicting the weights of the physical parts of broilers.

Danisman, Raife. January 2009 (has links)
Breeding companies advertise their chickens as having been selected for heavier breast meat. However, when comparisons are made between strains, these are normally made at a common age, and under these conditions the heaviest birds will have the heaviest breast meat yield. More meaningful comparisons would be made by relating breast weight to body protein weight, as these are allometrically related. Two experiments were conducted to test the hypothesis that the allometric relationship for each body part is the same irrespective of strain, sex and feed protein content, i.e. that geneticists have not been successful in changing the allometric relationship between breast meat weight and body protein weight. In the first trial, three strains, two sexes and four feed protein levels were used to 6 weeks of age, and in the second, four strains, two sexes and three feed protein levels were used to 12 weeks. Birds were sampled weekly, and the weights of breast meat (no skin or bone) and the meat and skin of the thigh, drum and wing were recorded before determining the body protein content of each of 1526 broilers. The hypothesis could not be corroborated when the data from the two trials were combined so a further trial was conducted to determine the amount of lipid that is deposited in the meat and skin of each of the commercially important parts of the broiler, on the assumption that differences in lipid deposition between strains, sexes and feed protein levels in the various physical parts would assist in explaining the anomalies in the analyses. It was confirmed in the third trial that the small differences between the observed and predicted weights of the physical parts may be accounted for through varying amounts of lipid deposition in these parts, depending on strain, sex and feed protein level, which must be accounted for when using allometry to predict the weights of the physical parts of the broiler at different stages of growth. The data collected in this series of trials may be used to predict the weights of these physical parts more accurately than has been the case to date. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.

Page generated in 0.1023 seconds