Spelling suggestions: "subject:"poutre d’euler bernoulli"" "subject:"poutre d’euler bernoullis""
1 |
Modélisation dynamique de la locomotion compliante : Application au vol battant bio-inspiré de l'insecte / Dynamics modeling of compliant locomotion : Application to flapping flight bio-inspired by insectsBelkhiri, Ayman 03 October 2013 (has links)
Le travail présenté dans cette thèse est consacré à la modélisation de la dynamique de locomotion des "soft robots", i.e. les systèmes multi-corps mobiles compliants. Ces compliances peuvent être localisées et considérées comme des liaisons passives du système,ou bien introduites par des flexibilités distribuées le long des corps. La dynamique de ces systèmes est modélisée en adoptant une approche Lagrangienne basée sur les outils mathématiques développés par l’école américaine de mécanique géométrique. Du point de vue algorithmique, le calcul de ces modèles dynamiques s’appuie sur un algorithme récursif et efficace de type Newton-Euler, ici étendu aux robots locomoteurs munis d’organes compliants. Poursuivant des objectifs de commande et de simulation rapide pour la robotique, l’algorithme proposé est capable de résoudre la dynamique externe directe ainsi que la dynamique inverse des couples internes. Afin de mettre en pratique l’ensemble de ces outils de modélisation, nous avons pris le vol battant des insectes comme exemple illustratif. Les équations non-linéaires qui régissent les déformations passives de l’aile sont établies en appliquant deux méthodes différentes. La première consiste à séparer le mouvement de l’aile en une composante rigide dite de "repère flottant" et une composante de déformation. Cette dernière est paramétrée dans le repère flottant par la méthode des modes supposés ici appliquée à l’aile vue comme une poutre d’Euler-Bernoulli soumise à la flexion et à la torsion. Quant à la seconde approche, les mouvements de l’aile n’y sont pas séparés mais directement paramétrés par les transformations finies rigides et absolues d’une poutre Cosserat. Cette approche est dite Galiléenne ou "géométriquement exacte" en raison du fait qu’elle ne requiert aucune approximation en dehors des inévitables discrétisations spatiale et temporelle imposées parla résolution numérique de la dynamique du vol. Dans les deux cas,les forces aérodynamiques sont prises en compte via un modèle analytique simplifié de type Dickinson. Les modèles et algorithmes résultants sont appliqués à la conception d’un simulateur du vol, ainsi qu’à la conception d’un prototype d’aile, dans le contexte du projet coopératif (ANR) EVA. / The objective of the present work is to model the locomotion dynamics of "soft robots", i.e. compliant mobile multi-body systems. These compliances can be either localized and treated as passive joints of the system, or introduced by distributed flexibilities along the bodies. The dynamics of these systems is modeled in a Lagrangian approach based on the mathematical tools developed by the American school of geometric mechanics. From the algorithmic viewpoint, the computation of these dynamic models is based on a recursive and efficient Newton-Euler algorithm which is extended here to the case of robots equipped with compliant organs. The proposed algorithm is compatible with control, fast simulation and real time robotic applications. It is able to solve the direct external dynamics as well as the inverse internal torque dynamics. The modeling tools and algorithms developed in this thesis are applied to one of the most advanced cases of compliante locomotion i.e. the flapping flight MAVs bio-inspired by insects. The nonlinear equations governing the passive deformations of the wing are derived using two different methods. In the first method, we separate the wing movement into a rigid component (which corresponds to the movements of a "floating frame"), and a deformation component. The latter one is parameterized in the floating frame using the assumed modes approach where the wing is considered as an Euler-Bernoulli beam undergoing flexion and torsion deformations. Regarding the second method, the wing movements are no longer separated but directly parameterize dusing rigid finite absolute transformations of a Cosserat beam. This method is called Galilean or "geometrically exact" because it does not require any approximation apart from the unavoidable spatial and temporal discretizations imposed by numerical resolution of the flight dynamics. In both cases, the aerodynamic forces are taken into account through a simplified analytical model. The resulting models and algorithms are used in the context of the collaborative project (ANR) EVA to develop a flight simulator, and to design wing prototype.
|
2 |
Finite elements for modeling of localized failure in reinforced concrete / Éléments finis pour la modélisation de la rupture localisée dans le béton armé / Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonuJukic, Miha 13 December 2013 (has links)
Dans ce travail, différentes formulations d'éléments de poutres sont proposées pour l'analyse à rupture de structures de type poutres ou portiques en béton armé soumises à des chargements statiques monotones. La rupture localisée des matériaux est modélisée par la méthode à discontinuité forte, qui consiste à enrichir l'interpolation standard des déplacements (ou rotations) avec des fonctions discontinues associées à un paramètre cinématique supplémentaire interprété comme un saut de déplacement (ou rotation). Ces paramètres additionnels sont locaux et condensés au niveau élémentaire. Un élément fini écrit en efforts résultants et deux éléments finis multi-couches sont développés dans ce travail. L'élément de poutre d'Euler Bernouilli écrit en effort résultant présente une discontinuité en rotation. La réponse en flexion du matériau hors discontinuité est décrite par un modèle élastoplastique en effort résultant et la relation cohésive liant moment et saut de rotation sur la rotule plastique est, quant à elle, décrite par un modèle rigide plastique. La réponse axiale est suppposée élastique. Pour ce qui concerne l'approche multi-couche, chaque couche est considérée comme une barre constituée de béton ou d'acier. La partie régulière de la déformation de chaque couche est calculée en s'appuyant sur la cinématique associée à la théorie d'Euler Bernoulli ou de Timoshenko. Une déformation axiale additionnelle est considérée par l'introduction d'une discontinuité du déplacement axial, introduite indépendamment dans chaque couche. Le comportement du béton est pris en compte par un modèle élasto-endommageable alors que celui de l'acier est décrit par un modèle élastoplastique. La relation cohésive entre la traction sur la discontinuité et le saut de déplacement axial est décrit par un modèle rigide endommageable adoucissant pour les barres (couches) en béton et rigide plastique adoucissant pour les barres en acier. La réponse en cisaillement pour l'élement de Timoshenko est supposée élastique. Enfin, l'élément multi-couche de Timoshenko est enrichi en introduisant une partie visqueuse dans la réponse adoucissante. L'implantation numérique des différents éléments développés dans ce travail est présentée en détail. La résolution par une procédure d'«operator split» est décrite pour chaque type d'élément. Les différentes quantités nécessaires pour le calcul au niveau local des variables internes des modèles non linéaires ainsi que pour la construction du système global fournissant les valeurs des dégrés de liberté sont précisées. Les performances des éléments développés sont illustrées à travers des exemples numériques montrant que la formulation basée sur un élément multicouche d'Euler Bernouilli n'est pas robuste alors les simulations s'appuyant sur des éléments d'Euler Bernouilli en efforts résultants ou sur des éléments multicouche de Timoshenko fournissent des résultats très satisfaisants. / In this work, several beam finite element formulations are proposed for failure analysis of planar reinforced concrete beams and frames under monotonic static loading. The localized failure of material is modeled by the embedded strong discontinuity concept, which enhances standard interpolation of displacement (or rotation) with a discontinuous function, associated with an additional kinematic parameter representing jump in displacement (or rotation). The new parameters are local and are condensed on the element level. One stress resultant and two multi-layer beam finite elements are derived. The stress resultant Euler-Bernoulli beam element has embedded discontinuity in rotation. Bending response of the bulk of the element is described by elasto-plastic stress resultant material model. The cohesive relation between the moment and the rotational jump at the softening hinge is described by rigid-plastic model. Axial response is elastic. In the multi-layer beam finite elements, each layer is treated as a bar, made of either concrete or steel. Regular axial strain in a layer is computed according to Euler-Bernoulli or Timoshenko beam theory. Additional axial strain is produced by embedded discontinuity in axial displacement, introduced individually in each layer. Behavior of concrete bars is described by elastodamage model, while elasto-plasticity model is used for steel bars. The cohesive relation between the stress at the discontinuity and the axial displacement jump is described by rigid-damage softening model in concrete bars and by rigid-plastic softening model in steel bars. Shear response in the Timoshenko element is elastic. Finally, the multi-layer Timoshenko beam finite element is upgraded by including viscosity in the softening model. Computer code implementation is presented in detail for the derived elements. An operator split computational procedure is presented for each formulation. The expressions, required for the local computation of inelastic internal variables and for the global computation of the degrees of freedom, are provided. Performance of the derived elements is illustrated on a set of numerical examples, which show that the multi-layer Euler-Bernoulli beam finite element is not reliable, while the stress-resultant Euler-Bernoulli beam and the multi-layer Timoshenko beam finite elements deliver satisfying results. / V disertaciji predlagamo nekaj formulacij končnih elementov za porušno analizo armiranobetonskih nosilcev in okvirjev pod monotono statično obteˇzbo. Lokalizirano porušitev materiala modeliramo z metodo vgrajene nezveznosti, pri kateri standardno interpolacijo pomikov (ali zasukov) nadgradimo z nezvezno interpolacijsko funkcijo in z dodatnim kinematičnim parametrom, ki predstavlja velikost nezveznosti v pomikih (ali zasukih). Dodatni parametri so lokalnega značaja in jih kondenziramo na nivoju elementa. Izpeljemo en rezultantni in dva večslojna končna elementa za nosilec. Rezultantni element za Euler-Bernoullijev nosilec ima vgrajeno nezveznost v zasukih. Njegov upogibni odziv opišemo z elasto-plastičnim rezultantnim materialnim modelom. Kohezivni zakon, ki povezuje moment v plastičnem členku s skokom v zasuku, opišemo s togo-plastičnim modelom mehčanja. Osni odziv je elastičen. V večslojnih končnih elementih vsak sloj obravnavamo kot betonsko ali jekleno palico. Standardno osno deformacijo v palici izračunamo v skladu z Euler-Bernoullijevo ali s Timošenkovo teorijo nosilcev. Vgrajena nezveznost v osnem pomiku povzroči dodatno osno deformacijo v posamezni palici. Obnašanje betonskega sloja opišemo z modelom elasto-poškodovanosti, za sloj armature pa uporabimo elasto-plastični model. Kohezivni zakon, ki povezuje napetost v nezveznosti s skokom v osnem pomiku, opišemo z modelom mehčanja v poškodovanosti za beton in s plastičnim modelom mehčanja za jeklo.Striˇzni odziv Timošenkovega nosilca je elastičen. Večslojni končni element za Timošenkov nosilec nadgradimo z viskoznim modelom mehčanja. Za vsak končni element predstavimo računski algoritem ter vse potrebne izraze za lokalni izračun neelastičnih notranjih spremenljivk in za globalni izračun prostostnih stopenj. Delovanje končnih elementov preizkusimo na več numeričnih primerih. Ugotovimo, da večslojni končni element za Euler-Bernoullijev nosilec ni zanesljiv, medtem ko rezultantni končni element za Euler-Bernoullijev nosilec in večslojni končni element za Timošenkov nosilec dajeta zadovoljive rezultate.
|
Page generated in 0.0616 seconds