• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du renforcement de poutres en bois scie avec des matériaux composites

Lacroix, Simon. January 2000 (has links)
Thèses (M.Sc.A.)--Université de Sherbrooke (Canada), 2000. / Titre de l'écran-titre (visionné le 28 août 2006). Publié aussi en version papier.
2

Influence d'un renforcement en matériaux composites sur le comportement d'une poutre en bois scié de qualité inférieure

Racine, Paschal Yvan Lucien. January 2002 (has links)
Thèses (M.Sc.A.)--Université de Sherbrooke (Canada), 2002. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
3

Analyse par éléments finis stochastiques de la propagation d'incertitudes dans un modèle mécanique non linéaire

Baroth, Julien. Fogli, Michel. January 2008 (has links)
Reproduction de : Thèse de doctorat : génie civil : Clermont Ferrand 2 : 2005. / Thèse avec annexes. Titre provenant de l'écran titre. Bibliogr. p.115-122.
4

Conception et analyse de cycle de vie d'un pont routier à platelage en aluminium sur poutres en bois lamellé-collé

Beudon, Camille 11 February 2021 (has links)
Le gouvernement québécois souhaite valoriser l’utilisation de l’aluminium et du bois d’ingénierie dans la construction et dans la réhabilitation d’ouvrages d’art. Dans le cadre de la vision à court terme des projets de construction, le bois et l’aluminium sont encore aujourd’hui désavantagés. Pourtant, ces deux matériaux pourraient devenir des matériaux concurrentiels pour la réhabilitation du parc routier québécois notamment grâce à leur production locale et leur possibilité de recyclage. Afin d’éviter une vision court-termiste biaisée, la méthode d’arbitrage utilisée est celle de l’analyse de cycle de vie. Cette méthode holistique prend en compte l’ensemble des étapes du cycle de vie. Deux analyses sont réalisées en parallèles. La première concerne les coûts de cycle de vie (ACCV) et la deuxième, les impacts environnementaux (ACV). Ces deux études complémentaires ajoutent une dimension environnementale, aujourd’hui non négligeable, aux futures prises de décision. La première étape de ce projet consiste en la conception du tablier de pont hybride à platelage en aluminium sur poutres en bois lamellé-collé à l’aide de la norme CAN/CSA S6-14 (CSA,2014b). Le pont-type ainsi conçu est par la suite utilisé au cours des analyses de cycle de vie. L’analyse économique se fait à l’aide de la norme ISO 15686-5 (ISO, 2017). L’analyse des impacts environnementaux se fait, elle, à l’aide de le norme ISO 14040 (ISO, 2006a) et 14044 (ISO, 2006b). L’utilisation du bois ainsi que le faible nombre d’opérations d’entretien rendent le tablier aluminium/bois plus avantageux économiquement sur toute sa durée de vie. Les tabliers conventionnels béton/acier assurent une nette diminution des coûts de construction initiaux mais cette tendance s’inverse très vite. Le préfabrication possible des tabliers de pont aluminium/acier et aluminium/bois réduisent les coûts indirects de construction. Ainsi, les tabliers de pont aluminium/bois réduisent de 86 % le coût total du tablier par comparaison avec des tabliers conventionnels. Au niveau des indicateurs environnementaux, le tablier aluminium/bois est également à privilégier. / The Quebec Gouvernment wishes to promote the use of wood and aluminium in the construction and rehabilitation of structures. In the context of the short-term vision of construction projects, wood and aluminium are clearly disadvantaged. However, aluminium and glued laminated timber could become competitive materials for the rehabilitation of the Quebec roadway bridges, in particular thanks to their local production in Quebec and their possibility of recycling. In order to avoid a biased short-term view, the method of arbitration used is that of life cycle analysis. This holistic method makes it possible to take into account all life-cycle stages. Two analyzes are carried out in parallel. The first concerns life cycle costs and the second concerns environmental impacts. These two studies complement each other and add a environmental dimension, which is not negligible today, on decision-making. The first stage of this project consists of the design of the hybrid bridge deck aluminium on glued laminated timber beams using the CAN / CSA S6-14 standard. The bridge-type thus designed is subsequently used during life cycle analyzes. The economic analysis is done using the ISO 15686-5 standard (2017). The environmental impact analysis is done using the ISO 14040 and 14044 standards (2006). The use of wood and aluminium as well as the low number of maintenance operations make the aluminum/wood deck more economically advantageous over its entire lifespan. Conventional concrete/steel decks provide a clear reduction in initial construction costs, but this trend is reversed very quickly. The possible prefabrication of aluminium/steel and aluminium/ wood bridge decks reduces indirect construction costs. Thus aluminium/ wood bridge decks reduce 86 % of the total cost of the conventional bridge deck. In terms of environmental indicators, the aluminium wood/decki s also to be favored
5

Développement des structures composites bois-béton avec emphase sur le comportement de la connexion

Naud, Nicolas 03 July 2018 (has links)
Les charpentes de bois sont une alternative très intéressante pour la construction de bâtiments multiétages. Grâce à sa faible empreinte écologique, ses excellentes propriétés mécaniques et l’esthétisme de son produit fini, le bois est un matériau incontournable. En y ajoutant une mince dalle de béton collaborant, on permet de réduire considérablement l’épaisseur et le poids des planchers tout en respectant les critères de conception. Pour ce faire, le transfert des charges de la dalle de béton à la poutre de bois doit passer par les connecteurs. Différents types de connecteurs permettent ce transfert. Néanmoins, il est difficile de garantir un comportement rigide en service et une rupture ductile de la poutre. La ductilité du connecteur est un indicatif de l’aptitude de la structure à dissiper de l’énergie. Dans ce mémoire, le comportement d’un nouveau connecteur composite coulé en place sera décortiqué. Ce connecteur en béton fibré à ultra-haute performance (BFUP) et contenant un coeur en acier permet de garantir la rigidité et la ductilité. L’objectif de cette recherche est de vérifier et de valider le comportement du connecteur composite en variant les différents paramètres géométriques, soit le diamètre et la longueur. De plus, afin de confirmer la performance du nouveau connecteur, un essai de flexion sera réalisé sur des poutres de plancher type en comparaison avec un autre type de connecteur. Ces essais en laboratoire seront également validés à l’aide de méthode de calcul simple et plus complexe permettant de vérifier le comportement structural en service et à l’ultime. Finalement, ce mémoire explore le comportement d’une mince dalle de BFUP connectée à une poutre de bois lamellé-collé (BLC) d’une portée de 9 m. Les poutres composites bois-béton ont été conçues avec une approche multicritère simplifiée. Les résultats confirment le potentiel prometteur, en termes de poids et d’épaisseur globale, de l’utilisation du BFUP dans les futurs projets de bâtiment multi-étages / Timber framing is a very attractive alternative for the construction of multistory buildings. Thanks to its low ecological footprint, its excellent mechanical properties and the aesthetics of finished product. By adding a thin concerted concrete slab, the thickness and weight of the floors can be considerably reduced while respecting the design criteria. In order to succeed, the load must be transferred from the concrete slab to the timber beam by the shear connectors. Different types of connectors allow this transfer. Nevertheless, it is difficult to guarantee good stiffness in serviceability and ductile behaviour before the collapse of the structure. Ductility is an indicator of the ability of the structure to dissipate energy. In this master thesis, the behaviour of a new cast-in-place composite connector will be discussed. This ultra-high performance fiber-reinforced concrete (UHPFRC) with a steel core ensures stiffness and ductility. The aim of this research is to verify and validate the behaviour of the composite connector by varying the different geometric parameters, namely the diameter and the length. Furthermore, in order to confirm the performance of the new connector, a bending test will be carried out on typical floor beams in comparison with another shear connector. These laboratory tests will also be validated using a simple and complex calculation method to verify the structural behaviour in both Serviceability Limit States (SLS) and Ultimate Limit States (ULS). Finally, this thesis explores the behaviour of a thin slab of UHPFRC connected to a glued laminated timber (GLT) with a long span of 9 m. The TCC beams were designed with a simplified multi-criteria approach. The results confirm the promising potentials, in terms of weight and overall thickness, of using UHPFRC thin slab for future TCC multistory buildings.
6

Analyse structurale du système âme-semelles de poutrelles en bois à configuration en I

Grandmont, Jean-Frédéric 18 April 2018 (has links)
La recherche et le développement effectué sur les poutrelles en I à base de bois a souvent eu recours aux essais expérimentaux et à des méthodes empiriques. Le panneau OSB (oriented stand board – panneau de lamelles orientées) s’est révélé être adapté lorsqu’il est utilisé comme âme dans ces poutrelles. Cependant, notre compréhension du comportement de cette âme en OSB pourrait être améliorée afin de mieux comprendre le comportement de ces poutrelles et d’en optimiser le design. L’objectif général de cette étude était de développer un modèle numérique permettant de simuler le comportement des poutrelles en I à base de bois afin d’avoir une meilleure compréhension de l’impact des propriétés de l’âme sur l’ensemble du système. Cet objectif a été poursuivi en spécifiant les trois objectifs spécifiques suivants : • Identifier les propriétés mécaniques de l’âme qui devraient être déterminées de manière expérimentale en fonction de leur impact sur la déflection des poutrelles et sur les déplacements relatifs causés par le cisaillement dans l’âme. • Déterminer les propriétés mécaniques requises pour l’âme en OSB, ainsi que leur variabilité, dans le développement d’un modèle numérique simulant les poutrelles en I en flexion. • Déterminer l’impact de la variabilité des propriétés mécaniques de l’âme en OSB sur le comportement en flexion des poutrelles en I. Pour identifier les propriétés mécaniques de l’âme importantes à être déterminées, une étude de sensibilité d’un modèle numérique basé sur la méthode par éléments finis (MEF) a été effectuée. Les propriétés mécaniques de l’âme ont été changées tour à tour dans le modèle, passant de 50% à 200% d’une valeur de référence pour déterminer leur impact sur la déflection de la poutrelle et sur le déplacement relatif en cisaillement dans l’âme. Le modèle s’est révélé être avant tout sensible au module de cisaillement dans le plan du panneau en modifiant la déflection de la poutrelle jusqu’à 23%. Le modèle s’est aussi montré sensible aux modules d’élasticité en tension de l’âme en OSB en directions parallèle et perpendiculaire à la longueur des poutrelles. La déflection de la poutrelle a respectivement été modifiée de 2% et 1% lorsque ces propriétés ont étés modifiées. Pour déterminer les propriétés mécaniques de l’âme en OSB requises et précédemment identifiées comme importantes ou sensibles du modèle pour l’âme en OSB, une méthodologie a été élaborée afin de déterminer les relations qui relient certaines propriétés mécaniques de l’OSB en fonction de la masse volumique de petits échantillons . Des panneaux OSB (n=40) ont d’abord étés scannés par rayons X afin de mesurer la masse volumique et d’en cartographier la variation dans le plan du panneau. Des échantillons ont étés découpés à partir de zones de masse volumique homogène selon trois orientations différentes (parallèle, perpendiculaire et à 45° par rapport à l’axe fort du panneau) afin de mesurer trois propriétés mécaniques requises pour un modèle élastique simulant l’âme en OSB d’une poutrelle en I : Les modules d’élasticité (MOE) parallèle et perpendiculaire à l’axe fort du panneau et le module de cisaillement (G). Étant donnée la faible taille des échantillons, le module de cisaillement à été déterminé suivant une équation de la mécanique des solides en utilisant une combinaison de MOE en tension dans le plan, incluant le MOE à 45°. Les résultats ont montré une forte relation entre la masse volumique de l’OSB et les propriétés mécaniques : les coefficients de détermination (R2) variant de 0,57 à 0,79. Cela a fourni les informations nécessaires pour inclure les propriétés mécaniques de l’OSB en fonction de la masse volumique dans un modèle simulant l’âme des poutrelles en I. Basé sur les équations de régression linéaire entre les propriétés mécaniques et la masse volumique, des augmentations de 207% du MOE en tension dans la direction parallèle, de 187% dans la direction perpendiculaire et de 172% à 45° ont été obtenues en passant de 600 à 900 kg/m3. L’équation utilisée pour déterminer le module de cisaillement s’est révélée juste et fiable. Finalement, pour déterminer l’impact de la variabilité des propriétés mécaniques de l’âme en OSB sur le comportement en flexion des poutrelles en I, plusieurs séries de simulations ont été effectuées. En premier lieu, la flèche et les déplacements relatifs en cisaillement dans l’âme ont été comparés à des résultats de simulation considérant une âme homogène et des résultats d’essais en laboratoire. Les résultats de simulation se sont révélés être près de ceux du laboratoire avec des différences de déflection se situant entre 9 et 24%. Les déplacements relatifs en cisaillement ont cependant été surestimés par le modèle. Les différences étaient potentiellement dues à la variabilité locale de masse volumique et des propriétés physiques et mécaniques l’OSB. Cette variabilité a été spécifiée dans le modèle en se basant sur les relations entre la masse volumique et les propriétés mécaniques de l’OSB préalablement établies. Les résultats de simulation considérant la variabilité des propriétés ont étés comparés avec d’autres considérant l’OSB comme étant homogène. La distribution des déplacements relatifs en cisaillement a été modifiée dans tous les cas et la flèche a en moyenne légèrement augmenté (moins de 1%). En se basant sur la relation entre la masse volumique et les propriétés mécanique des panneaux OSB, l’effet du profil de masse volumique selon l’épaisseur du panneau OSB a été considéré dans la simulation. Une augmentation de la flèche de l’ordre de 1% a été observée ainsi qu’un déplacement latéral de la semelle inférieure lorsque le profil de masse volumique vertical a été pris en compte. Il ressort de cette étude que l’OSB, en tant que matériau, a des propriétés mécaniques grandement variables à une échelle relativement petite. Ces propriétés, dont la plus influente est le module de cisaillement dans le plan du panneau, n’ont cependant pas un impact majeur sur le comportement des poutrelles en I en flexion dans le domaine élastique. / Research and development of wood I-joist design has often relied on laboratory testing and on empirical approach. Oriented strand board (OSB) has been used successfully as web material but its behavior within the I-joist needs to better be defined in order to improve wood I-joist design. The overall objective of this study is to develop a model that would simulate the deflection and shear strain of a wood I-joist in bending and to develop a better understanding of the web properties impact on the overall I-joist bending behavior. This was pursued by specifying three specific objectives: • Identify web mechanical properties that should be determined experimentally due to their impact on I-joist deflection and shear strain. • Determine the OSB web mechanical properties, including their variability, required to develop a finite element model of wood I-joist bending behavior. • Determine the impact of OSB physical and mechanical properties variability on I-joists bending behavior. To determine which OSB properties have higher impact on I-joist shear strain and deflection, a sensitivity study was performed with a finite element method (FEM) based model. The OSB mechanical properties were changed in a numerical model from 50% to 200% of the reference value to determine their impact on web shear strain and I-joist deflection. The model was primarily sensitive to in-plane web shear stiffness, which changed I-joist deflection up to 23%. The model was also sensitive to the web tensile modulus of elasticity parallel and perpendicular to joist length. These properties changed I-joist deflection up to 2% and 1%, respectively. The important or sensitive OSB web mechanical properties were determined by a methodology developed to obtain reliable mechanical properties of I-joists OSB web, including variability. OSB panel samples were scanned by X-rays to measure in-plane density variation. Specimens were cut from pre-defined homogeneous density areas in three different orientations (parallel, perpendicular, and diagonal to the strong axis) to measure three basic elastic properties required for an elastic model of I-joists OSB web: modulus of elasticity (MOE) parallel and perpendicular to the panel’s strong axis and shear modulus (G). Given the required small specimen size, shear modulus was determined using a combination of in-plane tensile MOEs, including MOE at 45 degrees. The results showed a strong relationship between OSB density and small-scale mechanical properties: coefficients of determination (R2) varied between 0.57 and 0.79. This provided information on I-joist OSB web mechanical properties as a function of density for input into a numerical model. Properties showed considerable variability in the 600–900 kg/m3 density range, with a 207% increase in tensile modulus of elasticity in the parallel direction, 187% in the perpendicular direction, and 172% at 45°. The mechanics-based OSB shear modulus equation used proved to be reliable. Finally, to determine the impact of OSB mechanical properties variability on I-joists bending behaviour, a series of simulations were performed. The inclusion OSB web heterogeneous properties over wood I-joist behavior in bending was investigated. The shear strain in the web and the I-joist deflection from full scale experimental results were first compared with model output considering homogeneous OSB web. Results showed a good correlation between simulated and full scale experimental bending test results values with deflection differences ranging from 9 to 24%. However, the model overestimated the shear strain. These differences were potentially due to the OSB local variability of density and mechanical properties. Based on a previously established density/properties relationship and on web OSB in-plane density mapping, OSB property heterogeneity was considered in the model. Simulation results including heterogeneous OSB properties (n=100) were then compared with those considering homogeneous properties (n=100). Shear strain distribution was altered in the web and a small (less than 1%) increase in deflection was observed. Based on density measured across the OSB web thickness and on the established density/properties relationship, simulations were performed to evaluate the effect of the vertical density profile on the simulated I-joist. A 1% deflection increase was observed as well as a lateral displacement of the bottom flange.

Page generated in 0.0471 seconds