• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 23
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solid state studies of ternary oxides and sulphides

Atkins, Alison J. January 1996 (has links)
No description available.
2

Structure and Phase Stability of CaC2 Polymorphs, Li2C2 and Lithium Intercalated Graphite : A Revisit with High Pressure Experiments and Metal Hydride–Graphite Reactions

Konar, Sumit January 2015 (has links)
Alkali (A) and alkaline earth (AE) metals can form carbides and intercalated graphites with carbon. The carbides mostly represent acetylides which are salt-like compounds composed of C22− dumbbell anions and metal cations. Both the acetylide carbides and intercalated graphites are technologically important. Superconductivity has been observed in several intercalated graphites such as KC8 and CaC6. Li intercalated graphites are a major ingredient in Li ion batteries. CaC2 is an important commodity for producing acetylene and the fertilizer CaCN2. In spite of the extensive research on A–C and AE–C compounds, phase diagrams are largely unknown. The thermodynamic and kinetic properties of both carbides and intercalalated graphites are discussed controversially. Recent computational studies indicated that well-known carbides, like CaC2 and BaC2, are thermodynamically unstable. Additionally, computational studies predicted that acetylide carbides will generally form novel polymeric carbides (polycarbides) at high pressures. This thesis is intended to check the validity of theoretical predictions and to shed light on the complicated phase diagrams of the Li–C and the Ca–C systems. The Li–C and the Ca–C systems were investigated using well-controllable metal hydride–graphite reactions. Concerning the Li–C system, relative stabilities of the metastable lithium graphite intercalation compounds (Li-GICs) of stages I, IIa, IIb, III, IV and Id were studied close to the competing formation of the thermodynamically stable Li2C2. The stage IIa showed distinguished thermal stability. The phase Id showed thermodynamic stability and hence, was included in the Li–C phase diagram. In the Ca–C system, results from CaH2–graphite reactions indicate compositional variations between polymorphs I, II and III. The formation of CaC2  I was favored  only  at  1100  ◦C or  higher  temperature  and  with  excess calcium, which speculates phase I as carbon deficient CaC2−δ . To explore the potential existence of polycarbides, the acetylide carbides Li2C2 and CaC2 were investigated under various pressure and temperature conditions, employing diamond anvil cells for in situ studies and multi anvil techniques for large volume synthesis. The products were characterized by a combination of diffraction and spectroscopy techniques. For both Li2C2 and CaC2, a pressure induced structural transformation was observed at relatively low pressures (10–15 GPa), which was followed by an irreversible amorphization at higher pressures (25–30 GPa). For Li2C2 the structure of the high pressure phase prior to amorphization could be elucidated. The ground state with an antifluorite Immm structure (coordination number (CN) for C22− dumbbells = 8) transforms to a phase with an anticotunnite Pnma structure (CN for C22− dumbbells = 9). Polycarbides, as predicted from theory, could not be obtained. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>
3

Synthesis, characterisation and adsorption properties of metal-organic frameworks and the structural response to functionalisation and temperature

Mowat, John P. S. January 2012 (has links)
The synthesis of a scandium aluminium methylphosphonate ScAl₃(CH₃PO₃)₆ isostructural to the aluminium methylphosphonate AlMePO-α and with permanent microporosity is reported here for the first time. Structural characterisation of three lanthanide bisphosphonate structures (I,II,III) with the light lanthanides and N,N'-piperazine bis-(methylenephosphonic acid) and its 2-methyl and 2,5-dimethyl derivatives is described. The framework of structure type I shows considerable flexibility upon dehydration with a symmetry change from C2/c, a = 23.5864(2) Å, b = 12.1186(2) Å, c = 5.6613(2) Å, β = 93.040(2)˚) in the hydrated state to P2₁/n, a = 21.8361(12) Å, b = 9.3519(4) Å, c = 5.5629(3) Å, β = 96.560(4)˚ after dehydration. This cell volume reduces by 27% on dehydration and is accompanied by a change in the conformation of the piperazine ring from chair to boat configuration. The structures of type I (hydrated and dehydrated) were refined against synchrotron powder X-ray diffraction data. Despite the reversible hydration and flexibility, the structures possess no permanent porosity. Investigation of the solvothermal chemistry of scandium carboxylates identified routes to 7 framework structures 5 of which were previously unreported in the scandium system. Lower temperature solvothermal reactions using terephthalic acid (80 - 140°C using dimethylformamide and diethylformamide) yielded two scandium terephthalates, MIL-88B(Sc) and MIL-101(Sc), identified by laboratory X-ray powder diffraction. Whereas higher temperature (160 – 220°C), reactions gave MIL-53(Sc) and Sc₂BDC₃. Further study with the tri- and tetra-carboxylate linkers, trimesic acid, 3,3',5,5'-azobenzenetetracarboxylic acid and pyromellitic acid yielded MIL-100(Sc), Sc-ABTC and Sc₄PMA₃ respectively. Structural identification of MIL-100(Sc) and Sc-ABTC was performed by means of X-ray powder diffraction analysis and of Sc₄PMA₃ by single crystal X-ray diffraction. The structure of a small pore scandium terephthalate Sc₂BDC₃ was investigated as a function of temperature and of functionalization. In situ synchrotron X-ray diffraction data, collected on a Sc₂BDC₃ in vacuo, enabled a phase change from orthorhombic Fddd to monoclinic C2/c and the associated structural effects to be observed in detail. The orthorhombic structure displayed a negative thermal expansivity of 2.4 × 10⁻⁵ K⁻¹ over the temperature range 225 – 523 K which Rietveld analysis showed to be derived from carboxylate group rotation. Motion within the framework was studied by ²H wide-line and MAS NMR on deuterated Sc₂BDC₃ indicating π flips can occur in the phenyl rings above 298 K. The effects of functionalization on the Sc₂BDC₃ framework were investigated by reactions using the 2-amino- and 2-nitroterephthalic acid and gave evidence for a strong structural effect resulting from inclusion of the functional groups. The structure of Sc₂BDC₃ and the functionalised derivatives were solved using Rietveld analysis on synchrotron X-ray powder diffraction data. Sc₂(NH₂-BDC)₃ was solved using the orthorhombic Sc₂BDC₃ framework starting model and, over the temperature range studied, stayed orthorhombic Fddd. Sc₂(NO₂-BDC)₃, was shown to be monoclinic C2/c over the same temperature range, a result of the steric effects of the bulky –NO₂ group in a small pore framework. Partial ordering of the functional groups was observed in both Sc₂(NH₂-BDC)₃ and Sc₂(NO₂-BDC)₃. The strength of interaction for the Sc₂(NH₂-BDC)₃ with CO₂ was higher than that of the parent Sc₂BDC₃ due to the strong –NH₂•••CO₂ interaction. Despite the inclusion of a relatively large –NO₂ group along the walls of a channel ~4 Å in diameter the Sc₂(NO₂-BDC)₃ still showed permanent microporosity to CO₂ (2.6 mmol g⁻¹) suggesting that there must be some motion in the -NO₂ group to allow the CO₂ molecules to diffuse through the channels. The scandium analogue of the flexible terephthalate MIL-53, a competitive phase in the synthesis of Sc₂BDC₃, was prepared and characterised by Rietveld analysis on synchrotron X-ray powder diffraction data using a combination of literature structural models and models obtained from single crystal X-ray diffraction experiments. Experimental solid state ⁴⁵Sc, ¹³C and ¹H NMR data combined with NMR calculations on the structural models produced from diffraction analysis were used to identify the hydrated (MIL-53(Sc)-H₂O), calcined (MIL-53(Sc)-CAL) and high temperature (MIL-53(Sc)-HT) structures of MIL-53(Sc). Further to this the 2-nitroterephthalate derivative, MIL-53(Sc)-NO₂, was prepared and characterised using single crystal X-ray diffraction. The adsorptive properties of the parent terephthalate and the functionalised derivative were compared and in both cases showed a breathing behaviour, exemplified by steps in the adsorption isotherms. MIL-53(Sc)-CAL was found to possess a closed pore configuration in the dehydrated state, a previously unreported structural form for the MIL-53 series, and its presence can be observed in the low pressure region of the CO₂ adsorption isotherm as a non-porous plateau. The selectivity and separation properties of two MOFs, the nickel bisphosphonate, STA-12(Ni) and the scandium carboxylate, Sc₂BDC₃ were measured using breakthrough curves on mixtures of CH₄ and CO₂. The results showed both materials to be highly selective in the adsorption of CO₂ over CH₄. Column testing using a PLOT column of STA-12(Ni) and a packed column of Sc₂BDC₃ showed promising preliminary results with STA-12(Ni) displaying effective, baseline separation on low boiling point hydrocarbon mixtures (C1 – C4) while the smaller pore channels of Sc₂BDC₃ were effective in the size selective separation of higher boiling point branched and straight-chain hydrocarbons (C5 – C7).
4

Fundamental structural aspects of crystalline lactose polymorphs

Kirk, Joanne H. January 2007 (has links)
Excipients are used in pharmaceutical formulations as fillers and drug carriers. Their successful function is inextricably linked to their physicochemical properties and, in turn, these properties are directly related to their structure. This thesis is concerned with the structural and spectroscopic characterisation of a selection of excipients by powder and single crystal X-ray diffraction, Raman and IR spectroscopy and MASNMR and an investigation of their stability as a function of temperature, humidity and particle size. As well as being a well-known excipient used in the pharmaceutical industry, lactose is also a common food additive. The diverse usage of lactose has led to a wealth of contradictory information relating to both structure and properties of this material. The first part of experimental work in this thesis identifies the four real lactose polymorphs; the naturally occurring a-lactose monohydrate; the anhydrous stable form of a-lactose; the hygroscopic unstable form of a-lactose; and the anomeric equivalent, p-lactose using powder X-ray diffraction. The work shows that anhydrous lactose formed by solvent dehydration often termed aM is simply the anhydrous stable form of a-lactose formed via a different route. Simple methods for discerning between the polymorphs using standard laboratory equipment are suggested. IlC MASNMR data were collected on all four forms of lactose for the first time and illustrate key differences between the four structures. Single crystal data were successfully collected on the a-lactose monohydrate and refinement carried at low temperature to determine the hydrogen bonded arrangement for the first time. Rietveld refmement of the hygroscopic unstable form of a-lactose using in-situ temperature resolved X-ray diffraction has shown that the hygroscopic form can be produced as a single phase. Refinement of Plactose using the Rietveld method has shown that powder diffraction data were comparable with single crystal data, with respect to structure refinement but attempts at both crystallisation and refinement of the stable anhydrous a-lactose polymorph were unsuccessful due to the complexity of the structure. Powder X-ray diffraction analysis was shown to be an effective tool in the quantification of mixed phase lactose samples with respect to both mixed phase stable anhydrous a-lactose and a-lactose monohydrate; and mixed p-Iactose and a-lactose monohydrate samples. The accuracy of the technique was determined to be at least 5%. Quantification was carried out using relative intensities of a well resolved unique reflection for each phase within the system. Dehydration techniques applied to lactose were applied to other hydrated pharmaceutical sugars; trehalose dihydrate and raffmose pentabydrate. Solid state techniques; powder X-ray diffraction, Raman and IR spectroscopy; showed that discrimination of other sugar hydrates became more complex with increasing levels of hydration.
5

Phase-change materials for thermal energy storage

Oliver, David Elliot January 2015 (has links)
There is a current requirement for technologies that store heat for both domestic and industrial applications. Phase-change materials (PCMs) represent an important class of materials that offer potential for heat storage. Heat-storage systems are required to undergo multiple melt/freeze cycles without any change in melting-crystallisation point and heat output. Salt hydrates are attractive candidates on account of their high energy densities, but there are issues associated with potential crystallisation of lower-hydrates, long-term stability, and reliable nucleation. An extensive review of the PCMs in the literature, combined with an evaluation of commercially available PCMs led to the conclusion that many of the reported PCMs, lack at least one of the key requirements required for use as a heat-storage medium. The focus of this research was therefore to identify and characterise new PCM compositions with tailored properties. New PCM compositions based of sodium acetate trihydrate were developed, which showed improved properties through the use of selective polymers that retard the nucleation of undesirable anhydrous sodium acetate. Furthermore, the mechanism of nucleation of sodium acetate trihydrate by heterogeneous additives has been investigated using variable-temperature powder X-ray diffraction. This study showed that when anhydrous Na2HPO4 was introduced to molten sodium acetate trihydrate at 58°C the hydrogenphosphate salt is present as the dihydrate. On heating to temperatures in the range 75-90°C the dihydrate was observed to dehydrate to form anhydrous Na₂HPO4. This result explains the prior observation that the nucleator is deactivated on heating. The depression of melting point of sodium acetate trihydrate caused by the addition of lithium acetate dihydrate has also been investigated using differential scanning calorimetry and powder X-ray diffraction. It has been possible to tune the melting point of sodium acetate trihydrate thereby modifying its thermal properties. Studies of the nucleation of sodium thiosulfate pentahydrate, a potential PCM, led to the structural characterisation of six new hydrates using single crystal Xray diffraction. All of these hydrates can exist in samples with the pentahydrate composition at temperatures ranging from 20°C to 45°C. These hydrates are: α-Na₂S₂O₃·2H₂O, which formed during the melting of α-Na₂S₂O₃·5H₂O; two new pentahydrates, β-Na₂S₂O₃·5H₂O and γ-Na₂S₂O₃·5H₂O; Na₂S₂O₃·1.33 H₂O, β-Na₂S₂O₃·2H₂O and Na₂S₂O₃·3.67 H₂O, which formed during the melting of β- Na₂S₂O₃·5H₂O. Furthermore, new PCMs in the 75-90°C range were identified. The commercial impact and route to market of several of the PCMs are discussed in the final chapter.
6

A STUDY OF RESPIRATOR CARBONS

Smith, Jock W.H. 27 August 2012 (has links)
Porous, high surface area activated carbon (AC) can be used to remove certain irritating and toxic gases from contaminated air streams. Impregnating AC with carefully selected chemicals can improve ACs adsorption capacity for certain gases and provide adsorption capacity for gases that un-impregnated AC cannot fi lter. Impregnated activated carbons (IACs) and ACs can be used as the active component in respirators. Comparative studies of di fferent commercially available AC samples and of IAC samples, prepared from a wide variety of di fferent chemicals, were performed. The gas adsorption capacity of the samples was tested using sulfur dioxide (SO2), ammonia (NH3), hydrogen cyanide (HCN) and cyclohexane (C6H12) challenge gases and compared to results obtained from a commercially available broad spectrum respirator carbon. The samples were characterized using wide angle x-ray di raction (XRD), small angle x-ray scattering (SAXS), nitrogen adsorption isotherms, thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). Highlights of this work include the discovery of a IAC sample prepared from zinc nitrate (Zn(NO3)2) and nitric acid (HNO3) that, after heating at 180 C under argon, had overall dry gas adsorption capacity that was greater than the commercially available sample. The importance of pore size on the C6H12 adsorption capacity of AC was demonstrated using SAXS and nitrogen adsorption data. A relationship between decreased humid C6H12 capacity and pre-adsorbed water was shown using SAXS, TGA and gravimetric studies.
7

Investigation of topotactic reduction processes for manganate (n=1) Ruddlesden-Popper phases and scandium vanadate

Hernden, Brad 30 August 2011 (has links)
Over the last decade progress towards step-wise structural transformations in solid state chemistry has been made using metal hydride reductants. Alkali and alkali-earth metal hydrides can effectively reduce transition metal oxides resulting frequently in novel oxygen defect structures. This provides access to control over cation oxidation states and magnetic exchange pathways, and thus electronic and magnetic properties. The goal for this research was to investigate a representative system that could be used both for exploration of novel oxygen defect phases and for investigating the fundamental parameters governing successful solid state reductions. The systems chosen for investigation were Sr2-xCaxMnO4 (0<x<2) and Sr2-xBaxMnO4 (x< 0.04). Detailed analysis of metal hydride reactivity with Sr2MnO4 is presented in addition to proof of the solid state reduction mechanism. As a result a number of novel oxygen defect phases have been produced, Sr2MnO4-x (0<x<0.37). The potential for producing novel lithium doped Sr2MnO4-x phases using a reduction/insertion approach with LiH has also been identified. Lastly as a test of application for metal hydrides as reductants the ability to topotactically reduce ScVO4 has been investigated.
8

Investigation of topotactic reduction processes for manganate (n=1) Ruddlesden-Popper phases and scandium vanadate

Hernden, Brad 30 August 2011 (has links)
Over the last decade progress towards step-wise structural transformations in solid state chemistry has been made using metal hydride reductants. Alkali and alkali-earth metal hydrides can effectively reduce transition metal oxides resulting frequently in novel oxygen defect structures. This provides access to control over cation oxidation states and magnetic exchange pathways, and thus electronic and magnetic properties. The goal for this research was to investigate a representative system that could be used both for exploration of novel oxygen defect phases and for investigating the fundamental parameters governing successful solid state reductions. The systems chosen for investigation were Sr2-xCaxMnO4 (0<x<2) and Sr2-xBaxMnO4 (x< 0.04). Detailed analysis of metal hydride reactivity with Sr2MnO4 is presented in addition to proof of the solid state reduction mechanism. As a result a number of novel oxygen defect phases have been produced, Sr2MnO4-x (0<x<0.37). The potential for producing novel lithium doped Sr2MnO4-x phases using a reduction/insertion approach with LiH has also been identified. Lastly as a test of application for metal hydrides as reductants the ability to topotactically reduce ScVO4 has been investigated.
9

Unexpected Magnetic Properties of Preovskite-Based Transition Metal Oxides

Cuthbert, Heather Lynn 11 1900 (has links)
<p>Various transition metal oxides with interesting magnetic properties (often based on the perovskite structure) were prepared using conventional solid-state methodologies and fully characterized using a variety of techniques such as powder X-ray diffraction, variable temperature neutron diffraction, SEM-EDS, TEM-EDS, SQUID magnetometry and heat capacity measurements.</p> <p>One family of compounds that was investigated intensively were the 'pillared perovskites'. In this structure type, perovskite-like layers of comer shared octahedra are separated. by about 10 A by diamagnetic edge-shared octahedral dimer 'pillars'. Despite this long distance between layers, long-range order is present in both the La5Re3Co016 and La5Re3Ni016 members. In fact, a new magnetic structure was discovered for the Ni compound consisting of ferromagnetically ordered layers, coupled antiferromagnetically.</p> <p>In addition, for the first time, substitution of the 5+ ion within the layer was successful, yielding compounds with general formula, La5Re3-xTaxB016 (B =Mn, Fe, Co, Ni; x ~ 0.5). Surprisingly, despite replacing about half of the magnetic ions within the perovskite layers with non-magnetic tantalum, the materials had the same ordering temperatures and magnetic structures as their unsubstituted analogues. This observation is evidence that the longer interlayer coupling pathway is the key to long-range ordering in this structure type.</p> <p>The lanthanum rhenium oxide, La3Re20 10, involves the edge-shared octahedral dimer 'pillar' unit from the pillared perovskite structure, but with one unpaired electron per dimer unit. Prepared for the first time by solid-state synthesis, and studied magnetically in depth, long-range order was evident at 18 K. Theoretical investigations hinted that the magnetic structure consists of antiferromagnetically coupled chains of dimers, coupled antiferromagnetically.</p> <p>The magnetic properties of the double perovskite, SrLaRuNi06, were also explored for the first time. This study demonstrates the power of neutron diffraction at elucidating magnetic information, such as the ordering temperature and magnetic structure, despite the presence of a ferromagnetic impurity that dominated much of the measurements.</p> <p>The candidate's examination of the magnetism of the rock-salt oxides, Na2Cu2Te06 and Na3Cu2Sb06 has raised some controversy in the literature, as the exact nature of the one-dimensional order (either antiferromagnetic-antiferromagnetic or antiferromagnetic-ferromagnetic alternating linear chains) is uncertain. Again, theoretical calculations and comparison with other magnetic data can aide in the ultimate understanding of the overriding magnetism.</p> <p>This thesis has focused on the synthesis and study of transition metal oxides with interesting or unusual magnetic properties. In many cases, the compounds exhibited long-range magnetic order despite convoluted or non-existent magnetic superexchange pathways.</p> / Thesis / Doctor of Philosophy (PhD)
10

AB INITIO STRUCTURE DETERMINATION OF GAS HYDRATES AND REFINEMENT OF GUEST MOLECULE POSITIONS BY POWDER X-RAY DIFFRACTION

Takeya, Satoshi, Udachin, Konstantin A., Ripmeester, John A. 07 1900 (has links)
Structure determination of powdered crystals is still not a trivial task. For gas hydrates, the difficulty lies in how to determine the rotational disorder and cage occupancies of the guest molecules without other supporting information or constraints because the complexity of the problem for the powder diffraction technique generally depends on the number of atoms to be located in the asymmetric unit. Here, the crystal structures of gas hydrates of CO2, C2H6, C3H8, and Methylcyclohexane/CH4, as determined by the direct-space and Rietveld techniques are reported. The resultant structures and cage occupancies were consistent with results found from conventional experimental methods using single crystal x-ray diffraction or solid-state 13C-NMR. It was shown that the procedures reported in this study make it possible to determine guest disorder and absolute cage occupancy of gas hydrates even from powder crystal.

Page generated in 0.1259 seconds