• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9625
  • 5175
  • 1738
  • 1340
  • 1093
  • 1083
  • 301
  • 273
  • 223
  • 185
  • 173
  • 168
  • 160
  • 141
  • 111
  • Tagged with
  • 26053
  • 3863
  • 3657
  • 3113
  • 2804
  • 2033
  • 1958
  • 1858
  • 1795
  • 1710
  • 1706
  • 1648
  • 1442
  • 1184
  • 1180
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Wind power in Hong Kong : with special reference to wind flow over complex terrain /

Wong, Ka Chun. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references. Also available in electronic version.
62

Wind energy analysis system

Koegelenberg, Johan 30 September 2014 (has links)
M.Ing. (Electrical & Electronic Engineering) / One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calculate and store the wind energy measurements relative to time. Success of the project is demonstrated by a working prototype.
63

'n Nuwe tegnologie vir geintegreerde elektromagnetiese komponente vir resonante drywingselektroniese mutators

Smit, Marthinus Christoffel 02 March 2015 (has links)
M.Ing. / A constant demand exists for ever decreasing size in switch mode supplies. The first step has been the introduction of resonant mode converters. Such converters typically consist of a resonant tank, a transformer and an input or output filter. The soft-switching characteristics of these converters allow an order of magnitude higher frequency, thus reducing the size of the reactive components. The next logical step towards a smaller package is introduced, namely the electromagnetic integration of the resonant tank and, if possible, the transformer into a single component, which; not only saves mass and volume, but can also reduce manufacturing costs. The particular converter investigated is the well known series resonant converter. It is shown that the necessary capacitance can be achieved by using a bifilar primary and the leakage inductance of the transformer replaces the physical inductor. Simulation of a suitable distributed circuit network indicates the same frequency domain characteristics and time domain waveforms for both the integrated component, and the discrete inductor, capacitor an transformer in series. Possible configurations for the integrated LCT-component are proposed, and theoretical analysis predicts an operating frequency in the MHZ region. Notwithstanding the complicated manufacturing, results show An integrated LCT-component, applied in a prototype 1 MHz power supply, with an efficiency of approximately 90 %. If manufacturing of the LCT-component allows an acceptable dimension and an acceptable resonant frequency, this can be a very competitive technology.
64

Methods of investigating phenomena arising from non-linearities in power systems

Julien, Kenneth Stephen January 1962 (has links)
Mathematical methods for investigating power-system phenomena arising from non-linearities are developed in this thesis. Most information available about power-system phenomena arising from non-linear effects is obtained from two main sources of research: field tests and miniature representation experiments. The use of equivalent circuits describing the physical system and the application of circuit analysis techniques is another approach to this problem. This thesis is concerned with the establishment of procedures for methods based on this approach. The incremental method is simple in theory but its application was difficult in the past because of the necessity of numerous calculations. The facilities of the digital computer overcome this difficulty and this method is fully explored. Certain aspects of the phenomena are investigated and some programming details of the method discussed. In contrast, the other methods require less calculations as the solutions are in the form of simple algebraic expressions. An insight into the system behaviour rather than accurate numerical results are obtained. Under the broad heading of analytical methods, the Method of Isoclines, the Principle of Harmonic Balance and the Method of Integral curves are investigated and used. The establishment of the equivalent circuits representing the physical system is studied and the adequacy of these representations is discussed. An interesting method of approaching the transient solution of the long-line equations is also developed. Comparison between the representations of the power transmission line by a finite number of T-sections and the use of distributed parameters is made. Underlying the whole study is the growing importance of non-linear effects and transient phenomena in power-system planning, design and operation. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
65

Stabilization and optimization of a power system with sensitivity considerations.

Wedman, Leonard Nickolaus January 1968 (has links)
An investigation is made into some aspects of the analysis and design of high order systems. The problems treated are system stabilization, parameter optimization, computation of an optimal controller and parameter sensitivity. The methods developed for solving these problems are applied to a 9ᵗʰ order linearized power system. To stabilize the system, an eigenvalue shift technique is used. Eigensystem sensitivity analysis is applied to determine both the parameter change required and the new eigensystem after the change has been made. A correction method is applied to the new eigensystem for improving accuracy in order that large steps in parameter change may be taken. This method is subsequently used in an optimization procedure for parameter setting to minimize a cost functional of quadratic form. For the computation of an optimal controller, Puri and Gruver's successive approximation method is used in conjunction with a fast recursive method developed for solving each approximation of the Ricatti matrix. The calculation can be initiated by the eigenvalue shifting method to ensure that the system is initially stable. Finally, a time response sensitivity study is made using a method developed for simultaneous sensitivity function determination. This method reduces computation time significantly over the conventional method ⁽⁹⁾ thus enabling the investigation of time response sensitivity to a large number of parameters. The results of the sensitivity study are then applied to the design of a suboptimal controller. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
66

A study of power system economic operation

Perera, Karannagoda K.Y.W. January 1969 (has links)
This thesis is a study of some of the financially important and technically interesting situations which appear in the economic operation of power systems. Static type optimization problems, which arise when a given plant demand is distributed among the running units of that plant, and in thermal power systems, are first considered. For this case, scheduling equations which are valid in the presence of bounds on the plant operating range are derived through the application of Kuhn-Tucker conditions. A dynamic type short-range hydro-thermal problem based essentially according to the currently prevalent formulation of assuming a specified water usage, is extended to include operating range bounds and unit commitment aspects. Pontryagin's maximum principle is found to be useful in obtaining suitable solutions to the extended formulations. For the above dynamic type short-range hydro-thermal problems to be meaningful, the water usage specification should usually be obtained through a careful analysis of long term resource management. With the above view, the overall hydro-thermal economic optimization problem is formulated and the long-range and short-range problems are deduced as its components. This results in a dynamic type long-range component while allowing a static type short-range problem. Among other practical aspects, the stochastic nature of the river flows and the very long and indefinite nature of the period of optimization are taken into account. A mathematical basis for the intuitively appealing concept of water values is developed. As a solution to the long-range problem, an equation which gives the interrelationship of water value functions is derived through the application of the principle of optimality. This equation is shown to be useful in computing water values as a function of reservoir state and time. Finally, complications which arise due to the variation of water head, flow interconnected reservoirs and interruptible consumers are analysed. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
67

Impact of degradation of the moisture separators on the overall performance of the moisture separator reheater in a nuclear power plant

Saaymans, Natalie January 2020 (has links)
The moisture separator forms part of the moisture separator reheater (MSR) component used in a steam cycle in a nuclear power plant, to reduce the risk of erosion of the low-pressure (LP) turbine and to improve cycle efficiency. The performance and optimisation of moisture separators is well studied in literature; however, there have been few investigations on the impact of moisture separator degradation on MSR performance. To investigate this impact a mathematical model, representing the steam flow through the MSR, is developed and used to simulate and analyse the impact of degradation conditions. The mathematical model was developed for design conditions, calibrated and validated against manufacturer specifications. The model was then augmented to include two moisture separator degradation conditions. The first degradation condition is the partial blockage of separator vane channels due to fouling, and the second is separator material deterioration resulting in steam bypass of the moisture separator. The model uses known properties of the MSR inlet steam and predicts the properties of steam exiting the MSR, given the simulated degradation of the moisture separator. The outcomes of the model simulations demonstrated that partial blockage of moisture separator vane channels increases steam velocity though the separator and consequently improves MSR performance, but with a noted pressure drop. The velocity increased until a theoretical upper limit, above which re-entrainment of droplets back into the steam flow reduces MSR performance. It was concluded that there is margin in the separator surface area design, where a minimal reduction in separator surface area (represented in the model as blockage of the vane channels) would improve the performance of the MSR, while still allowing for a buffer against the re-entrainment velocity upper limit. Equally, an unexpected improvement in MSR performance may be an indication of blockage of separator vane channels that, if not monitored and managed, could surpass the critical velocity limit where re-entrainment adversely affects the MSR performance. The simulation results demonstrated that steam bypass of the moisture separator is a credible degradation condition which affects MSR performance. It was found that steam bypass of the moisture separator leads to a decline in the quality of steam exiting the separator and a decline in MSR performance. The simulation of a fully bypassed moisture separator showed that the MSR performance declines by more than three times the design value when compared to the scenario where there is no bypass of the moisture separator.
68

Determining the optimal nuclear safety regulatory approach for South Africa's expanding nuclear power industry

De Araujo, Jenna 18 February 2019 (has links)
South Africa is poised to expand significantly its nuclear power generation industry. Considering that the current South African nuclear safety regulatory approach is applied to regulate the operation and maintenance of one mature nuclear power plant, it is expected that significant adaptation of this approach will occur for the regulatory system to accommodate the planned industry expansion. This dissertation tests the hypothesis that the optimal nuclear safety regulatory approach for South Africa’s planned nuclear industry can already be determined by systematically comparing the suitability of various alternatives in use in the international nuclear industry. Investigating the validity of this hypothesis improves the understanding of the possibilities available for future nuclear safety regulation in South Africa and aids preparations and decision-making in this regard. Research was conducted on the various nuclear safety regulatory approaches applied internationally and on what determines the suitability of each approach in different circumstances. The characteristics of South Africa’s current and planned nuclear power generation industry were investigated. Applying multi-criteria decision making analysis methodology, a test was developed and used to systematically assess the relative suitability of the various regulatory approaches to the South African context. The three primary approaches to nuclear safety regulation considered were the prescriptive approach, the performance based approach and the goal-setting approach. Based on currently available information, the test results show that the goal-setting regulatory approach is the optimal approach for South Africa’s planned nuclear power industry. However research findings also show that the state level bilateral cooperation the South African government would pursue to develop South Africa’s fleet approach to the 9,6 gigawatt nuclear new build programme may have sufficient influence on South Africa’s nuclear industry to change South Africa’s optimal nuclear safety regulatory approach or make this plant specific. The benefits of aligning South Africa’s nuclear safety regulatory approach with the approach applied in the fleet vendor company’s country of origin may outweigh other considerations. The vendor company for South Africa’s nuclear new build programme is not yet known. Even though systematic comparison of the suitability of various regulatory approaches shows that the goal-setting nuclear safety regulatory approach is the optimal approach for South Africa, the hypothesis is shown to be false. The optimal nuclear safety regulatory approach for South Africa’s planned nuclear industry cannot already be determined, since bilateral cooperation with the nuclear new build fleet vendor company’s country of origin may be the dominant factor in shaping South Africa’s nuclear safety regulatory approach. In the interim and in the event that strategic regulatory alignment for the new build fleet is not embarked upon, the research findings and test results have an important implication: Applying the goal-setting approach as the dominant nuclear safety regulatory approach can optimize nuclear safety regulation of South Africa’s nuclear industry.
69

First Order Assessment of Heat Transfer due to the Loss of Inventory in a Spent Fuel Pool

Fillis, Vernon W 18 February 2019 (has links)
The Fukushima Daiichi Nuclear Power Plant accident created renewed international interest in the behaviour of spent fuel subsequent to a complete loss of water inventory in a spent fuel pool (SFP). The study conducted in this dissertation serves as a starting point in gaining an understanding of the thermal hydraulics and associated heat transfer processes involved when spent fuel assemblies (SFAs) become uncovered in air. The complete loss of cooling in a SFP is a complex 3-D problem, hence several simplifications were necessary in this research to narrow the scope. Further, due to the complexity of this topic, the results obtained serves purely as a first order approximation. Accordingly, the Flownex systems CFD code (version 8.6.1.2630) was used to simulate the thermal response of the uncovered SFAs in the SFP of a typical Pressurised Water Reactor (PWR) during a severe accident scenario. Two network models were developed. The first was to identify the dominant heat transfer mechanisms with-in the spent fuel pool and it therefore accounted for a range of physics. This included convective heat transfer through the composite SFA channel walls, conduction along the vertical axial direction of the SFAs and through the inner and outer rack wall as well as through the fuel building (FB) roof and side walls. The model also took into account the radiative heat transfer from the cladding surface of the composite SFAs to the FB roof and side walls. This network model informed that the heat transfer with-in the SFA during the considered extreme accident scenario is dominated by radiative heat transfer. This informed the development of an improved 2-D network model using conduction elements which were specially calibrated in this work to account for radiative heat loss. An effective conduction for the fuel volume which is dependent on temperature was determined and was used to assess the severe accident. Transient results showed that the spent fuel may reach cladding oxidation temperature within circa 10.5 hrs after a complete loss of inventory.
70

Sensitivity analysis of the secondary heat balance at Koeberg Nuclear Power Station

Boyes, Haydn 02 August 2021 (has links)
At Koeberg Nuclear Power Station, the reactor thermal power limit is one of the most important quantities specified in the operating licence, which is issued to Eskom by the National Nuclear Regulator (NNR). The reactor thermal power is measured using different methodologies, with the most important being the Secondary Heat Balance (SHB) test which has been programmed within the central Koeberg computer and data processing system (KIT). Improved accuracy in the SHB will result in a more accurate representation of the thermal power generated in the core. The input variables have a significant role to play in determining the accuracy of the measured power. The main aim of this thesis is to evaluate the sensitivity of the SHB to the changes in all input variables that are important in the determination of the reactor power. The guidance provided by the Electric Power Research institute (EPRI) is used to determine the sensitivity. To aid with the analysis, the SHB test was duplicated using alternate software. Microsoft Excel VBA and Python were used. This allowed the inputs to be altered so that the sensitivity can be determined. The new inputs included the uncertainties and errors of the instrumentation and measurement systems. The results of these alternate programmes were compared with the official SHB programme. At any power station, thermal efficiency is essential to ensure that the power station can deliver the maximum output power while operating as efficiently as possible. Electricity utilities assign performance criteria to all their stations. At Koeberg, the thermal performance programme is developed to optimize the plant steam cycle performance and focusses on the turbine system. This thesis evaluates the thermal performance programme and turbine performance. The Primary Heat Balance (PHB) test also measures reactor power but uses instrumentation within the reactor core. Due to its location inside the reactor coolant system, the instrumentation used to calculate the PHB is subject to large temperature fluctuations and therefore has an impact on its reliability. To quantify the effects of these fluctuations, the sensitivity of the PHB was determined. The same principle, which was used for the SHB sensitivity analysis, was applied to the PHB. The impact of each instrument on the PHB test result was analysed using MS Excel. The use of the software could be useful in troubleshooting defects in the instrumentation. A sample of previously authorised tests and associated data were used in this thesis. The data for these tests are available from the Koeberg central computer and data processing system.

Page generated in 0.0561 seconds