• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A genetic algorithm approach for three-phase harmonic mitigation filter design

Zubi, Hazem M. January 2013 (has links)
In industry, adjustable speed drives (ASDs) are widely employed in driving AC motors for variable speed applications due to the high performance and high energy efficiency obtained in such systems. However, ASDs have an impact on the power quality and utilisation of AC power feeds by injecting current harmonics and causing resonances, additional losses, and voltage distortion at the point of common coupling. Due to these problems, electric power utilities have established stringent rules and regulations to limit the effects of this distortion. As a result, efficient, reliable, and economical harmonic mitigation techniques must now be implemented in practical systems to achieve compliance at reasonable cost. A variety of techniques exist to control the harmonic current injected by ASDs, and allow three-phase AC-line-connected medium-power systems to meet stringent power quality standards. Of these, the broadband harmonic passive filter deserves special attention because of its good harmonic mitigation and reactive power compensation abilities, and low cost. It is also relatively free from harmonic resonance problems, has relatively simple structural complexity and involves considerably less engineering effort when compared to systems of single tuned shunt passive filters or active filters and active rectifier solutions. In this thesis, passive broadband harmonic filters are investigated. In particular, the improved broadband filter (IBF) which has superior overall performance and examples of its application are increasing rapidly. During this research project, the IBF operating principle is reviewed and its design principles are established. As the main disadvantage of most passive harmonic filters is the large-sized components, the first proposed design attempts to optimize the size of the filter components (L and C) utilized in the existing IBF topology. The second proposed design attempts to optimize the number and then the size of filter components resulting in an Advanced Broadband passive Filter (ABF) novel structure. The proposed design methods are based on frequency domain modelling of the system and then using a genetic algorithm optimization technique to search for optimal filter component values. The results obtained are compared with the results of a linear searching approach. The measured performance of the optimal filter designs (IBF and ABF) is evaluated under different loading conditions with typical levels of background voltage distortion. This involves assessing input current total harmonic distortion, input power factor, rectifier voltage regulation, efficiency, size and cost. The potential resonance problem is addressed and the influence of voltage imbalance on performance is investigated. The assessment is based on analysis, computer simulations and experimental results. The measured performance is compared to various typical passive harmonic filters for three-phase diode rectifier front-end type adjustable speed drives. Finally, the broadband filter design’s effectiveness and performance are evaluated by involving them in a standard IEEE distribution network operating under different penetration levels of connected nonlinear total loads (ASD system). The study is conducted via detailed modelling of the distribution network and the linked nonlinear loads using computer simulations.
2

A Single Transistor Unity Power Factor Rectifier

Tunc, Murat 01 February 2007 (has links) (PDF)
This thesis analyzes unity power factor rectifiers since this type of rectifiers use energy as efficient as possible. Throughout the thesis, some unity power factor rectifier topologies are investigated and some of them selected to investigate in detail. Afterwards, a new single transistor unity power factor rectifier topology is proposed, simulated, implemented and compared with one of the selected unity power factor rectifier topology on the basis of efficiency, total harmonic distortion, input current ripple and output voltage ripple.
3

Lowpass Broadband Harmonic Filter Design

Zubi, Hazem 01 September 2005 (has links) (PDF)
In this thesis an analytical design method of the improved broadband passive harmonic filter (IBF) for three phase diode rectifier front-end type adjustable speed drives is presented. The method is based on frequency domain modeling of the rectifier and filter. The success of the method involves accurate representation of the load harmonics. With the harmonics well defined, the harmonic and fundamental frequency equivalent circuits are utilized to analytically calculate the voltages/currents. Thus, the size and the performance of the filter can be optimized. The analytical method is verified via computer simulations and laboratory experiments. Also a performance comparison of various passive harmonic filters for three-phase diode rectifier front-end type adjustable speed drives is provided. The comparison involves the input current total harmonic distortion, input power factor, rectifier voltage regulation, energy efficiency, size, and cost. The parallel/series harmonic resonance problem related issues are addressed and unbalanced operation performance investigated. The comparison is based on analysis and computer simulations and the results are validated by laboratory experiments.
4

Single And Three Phase Power Factor Correction Techniques Using Scalar Control

Anand, A G Vishal 06 1900 (has links) (PDF)
No description available.

Page generated in 0.0685 seconds