• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed Control of HVDC Transmission Grids

Babazadeh, Davood January 2017 (has links)
Recent issues such as priority access of renewable resources recommended by European energy directives and increase the electricity trading among countries lead to new requirements on the operation and expansion of transmission grids. Since AC grid expansions are limited by legislative issues and long distance transmission capacity, there is a considerable attention drawn to application of HVDC transmission grids on top of, or in complement to, existing AC power systems. The secure operation of HVDC grids requires a hierarchical control system. In HVDC grids, the primary control action to deal with power or DC voltage deviations is communication-free and local. In addition to primary control, the higher supervisory control actions are needed to guarantee the optimal operation of HVDC grids. However, the implementation of supervisory control functions is linked to the arrangement of system operators; i.e. an individual HVDC operator (central structure) or sharing tasks among AC system operators (distributed structure). This thesis presents distributed control of an HVDC grid. To this end, three possible supervisory functions are investigated; coordination of power injection set-points, DC slack bus selection and network topology identification. In this thesis, all three functions are first studied for the central structure. For the distributed solution, two algorithms based on Alternating Direction Method of Multipliers (ADMM) and Auxiliary Problem Principle (APP) are adopted to solve the coordination of power injection. For distributed selection of DC slack bus, the choice of parameters for quantitative ranking of converters is important. These parameters should be calculated based on local measurements if distributed decision is desired. To this end, the short circuit capacity of connected AC grid and power margin of converters are considered. To estimate the short circuit capacity as one of the required selection parameters, the result shows that the recursive least square algorithm can be very efficiently used. Besides, it is possible to intelligently use a naturally occurring droop response in HVDC grids as a local measurement for this estimation algorithm. Regarding the network topology, a two-stage distributed algorithm is introduced to use the abstract information about the neighbouring substation topology to determine the grid connectivity. / <p>QC 20170306</p>
2

Impedance Extraction by MATLAB/Simulink and LabView/Multisim

Lin, Jen-Pin 17 April 2014 (has links)
This thesis studies the techniques of small-signal impedance measurement in three-phase power systems. Stability issue has become critically important since power electronics are highly applied in power distribution and conversion systems. Controlled output systems cause the risk of instability. In order to obtain the impedance model, an impedance extraction in D-Q reference frame algorithm is developed. This paper also applied Interpolated Fast Fourier Transform to increase accuracy of impedance model. Based on the voltage injection, Phase-Locked Loop, Park Transform, D-Q reference frame, and IPFFT. Three-phase system has been realigned on D-Q coordinate and impedance model is extracted in this form. Firstly, impedance extraction algorithm is designed by MATLAB/Simulink, the algorithm includes PLL, D-Q transform, and IPFFT is used to obtain magnitude and phase angle in frequency domain. Impedance matrices in D-Q frame may be solved through the relation between currents and voltages. Impedance model is made through various tests. Secondly, using the algorithm to test RL circuit to verify with real bode plot of the circuit. Then apply the algorithm on sophisticated circuit model. Finally, implement the algorithm on LabView/Multisim for future hardware tests. This paper clearly describes the objective of the research, the research problem and approaches, and experiment setup. This paper presents work conducted at the Smart Grid Power Systems Laboratory at University of South Florida.
3

Evaluation of Active Capacitor Banks for Floating H-bridge Power Modules

Nguyen, Tam Khanh Tu 07 February 2020 (has links)
The DC-side floating capacitors in the floating power modules of power converters are subject to high voltage fluctuation, due to the presence of reactive harmonic components. Utilizing passive capacitors, as done in traditional methods, helps reduce the DC-bus voltage ripple but makes the system bulky. An active capacitor can be integrated with the floating H-bridge power modules to remove the effect of the ripple powers on the DC bus. The auxiliary circuit, which is much smaller in size compared to an equivalent passive capacitor, helps increase the power density of the system. This work focuses on the analysis of power components, and the extension of the active capacitor to the Perturbation Injection Unit (PIU), in which the DC side is highly distorted by multiple harmonic components. A control scheme is proposed to compensate for these multiple harmonics and balance the DC-link voltage in the active capacitor. Also, an equivalent DC-bus impedance model is introduced, which is more accurate than that in existing works. Simulation studies and evaluation of the design have verified the effectiveness of the active capacitor solution. / Single-phase power converters have been widely used in many applications such as electric vehicles, photovoltaic (PV) systems, and grid integration. Due to their popular application, there is a need to reduce the sizes and volumes while still maintaining good performances of the systems. One of the most effective methods, which is a subject in many research works, is to replace the bulky passive capacitor bank in a system by an active capacitor. The active capacitor is designed to absorb the ripple components in the DC side of the converters, which results in a constant DC-link voltage. In comparison to the passive capacitor solution, the active capacitor is much smaller in size but can give a better DC-bus ripple performance. Therefore, the active capacitor has become an attractive solution for the single-phase converters. The active capacitor for the traditional rectifier, where the DC side is directly connected to a load, has been intensively investigated in the past decade. However, there is limited research regarding the active capacitor for rectifiers with floating H-bridge power modules. This work extends the application of the active capacitor to the Perturbation Injection Unit (PIU), which is a grid-connected single-phase rectifier with floating H-bridge power modules. The selection of a suitable active capacitor for the PIU is based on the evaluation of various active capacitor banks. Limits in existing control schemes, which prevent the extension of the active capacitor to the PIU, are thoroughly studied. An effective voltage-mode control scheme is then proposed for the selected active capacitor, which makes it an attractive solution for the PIU. Moreover, limits of the DC-bus impedance analysis using traditional assumptions in existing works are investigated, and an improved DC-bus impedance model is proposed. Based on the operation conditions of the PIU and the proposed impedance model, the active capacitor's components can be properly designed, and improved configurations in terms of the equivalent impedance can be analyzed. Simulation results, as well as the design and evaluation of the active capacitor, demonstrate great improvements in terms of volume and weight over the traditional passive capacitor bank.
4

Vibração em estruturas acopladas sujeitas a excitações em altas freqüencias / Coupled structures vibrations subject a high frequencies excitation

Libardi, Ana Lúcia 28 September 2005 (has links)
Este trabalho baseia-se no estudo e aplicação da Análise Estatística de Energia (SEA). Tal técnica é amplamente empregada nos estudos de vibrações em altas freqüências, dominadas por altas densidades modais e oferecendo toda a solução para o modelo em termos de parâmetros estatísticos. Aplica-se SEA tanto a modelos teóricos e numéricos quanto a modelos experimentais. Qualquer uma das duas abordagens descrita anteriormente tem como objetivo a obtenção dos parâmetros SEA, conhecidos por fator de perda por dissipação interna, fator de perda por acoplamento e densidade modal. Para o estudo e aplicação experimental da técnica SEA utiliza-se o Método de Injeção de Potência, sendo este aplicado a estruturas acopladas do tipo viga, numa configuração em T e estruturas acopladas do tipo placa que formam uma caixa. O estudo numérico e analítico também faz parte deste trabalho, tendo como base o desenvolvimento de uma formulação para vigas relativamente espessas, mostrando a influência geométrica na transmissão da vibração entre subsistemas. Comparações também são feitas entre os resultados obtidos experimentalmente na caixa e na viga T com os obtidos analiticamente e computacionalmente e em ambos os casos estes apresentaram uma boa correlação. Por fim, uma estrutura composta por uma cavidade acústica é estudada e um aparato o para injeção de potência é construído com base no estudo em altas freqüências. / This work is based in the study and application of the Statistical Energy Analysis (SEA), which is applied to high frequencies vibrations characterized by high modal densities and the solution, is given in statistical terms. This analysis is used in numerical, analytical and experimental models and the principal objective is the estimative of the SEA parameters, known by damping loss factors, coupling loss factors and modal densities. The experimental model is based on the Power Injection Method (PIM), and this was applied in coupled structures, like beam type, that was coupled in a T-beam configuration and the other type of coupling was studied in a box type structure. An analytical model was developed in this thesis, it was based on the Timoshenko beam formulation and the possible geometrical effects were studied. The results obtained as experimentally as numerically or analytically were compared and showed a good agreement. Finally, an acoustic cavity was studied and a new display was constructed to inject power in the cavity and a high frequency study was performed.
5

Vibração em estruturas acopladas sujeitas a excitações em altas freqüencias / Coupled structures vibrations subject a high frequencies excitation

Ana Lúcia Libardi 28 September 2005 (has links)
Este trabalho baseia-se no estudo e aplicação da Análise Estatística de Energia (SEA). Tal técnica é amplamente empregada nos estudos de vibrações em altas freqüências, dominadas por altas densidades modais e oferecendo toda a solução para o modelo em termos de parâmetros estatísticos. Aplica-se SEA tanto a modelos teóricos e numéricos quanto a modelos experimentais. Qualquer uma das duas abordagens descrita anteriormente tem como objetivo a obtenção dos parâmetros SEA, conhecidos por fator de perda por dissipação interna, fator de perda por acoplamento e densidade modal. Para o estudo e aplicação experimental da técnica SEA utiliza-se o Método de Injeção de Potência, sendo este aplicado a estruturas acopladas do tipo viga, numa configuração em T e estruturas acopladas do tipo placa que formam uma caixa. O estudo numérico e analítico também faz parte deste trabalho, tendo como base o desenvolvimento de uma formulação para vigas relativamente espessas, mostrando a influência geométrica na transmissão da vibração entre subsistemas. Comparações também são feitas entre os resultados obtidos experimentalmente na caixa e na viga T com os obtidos analiticamente e computacionalmente e em ambos os casos estes apresentaram uma boa correlação. Por fim, uma estrutura composta por uma cavidade acústica é estudada e um aparato o para injeção de potência é construído com base no estudo em altas freqüências. / This work is based in the study and application of the Statistical Energy Analysis (SEA), which is applied to high frequencies vibrations characterized by high modal densities and the solution, is given in statistical terms. This analysis is used in numerical, analytical and experimental models and the principal objective is the estimative of the SEA parameters, known by damping loss factors, coupling loss factors and modal densities. The experimental model is based on the Power Injection Method (PIM), and this was applied in coupled structures, like beam type, that was coupled in a T-beam configuration and the other type of coupling was studied in a box type structure. An analytical model was developed in this thesis, it was based on the Timoshenko beam formulation and the possible geometrical effects were studied. The results obtained as experimentally as numerically or analytically were compared and showed a good agreement. Finally, an acoustic cavity was studied and a new display was constructed to inject power in the cavity and a high frequency study was performed.

Page generated in 0.0743 seconds