• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 21
  • 19
  • 17
  • 17
  • 15
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A distributed, load-aware, power and frequency bargaining protocol for LTE-based networks

Sajid, Muhammad, Siddiqui, Imran January 2012 (has links)
In this thesis a distributed, dynamic, load aware, joint power and frequency allocation protocol for 4G networks along with system-level simulated results are presented. In all cellular networks, a key limiting factor for throughput is inter-cell interference, especially at the cell edges. Several methods have been proposed and adopted in each mobile network generation to cancel or suppress its effects, whereas each method has its drawbacks in terms of receiver complexity or additional control nodes. However, the proposed protocol presented here does not impose any architectural changes.  In 4G networks such as LTE, the choice of OFDMA for the air interface has paved the way for selective frequency and power allocation in the available spectrum. Taking advantage of this opportunity, fractional frequency reuse (FFR) has been proposed in OFDMA based mobile networks in order to reduce the throughput loss at the cell edges due to inter-cell interference. In FFR, center users lose part of available spectrum that is dedicated to the edge users.  Our protocol aims to minimize this loss of center users incurred by FFR, at the cost of minimal degradation at the edges. An eNodeB, only when overloaded, requests its neighbours’ edge band to be used for its center users at a reduced power level. This is done via small message exchange between the eNodeBs. The neighbors of the overloaded eNodeBs solve a small local knapsack problem to decide whether band lending is feasible or not. A distinguishing feature of this protocol is the power level adjustment for the borrowed band, which is mutually decided by the borrower and lender. The band is released when it is not needed or it is causing unacceptable loss to the lender. The implementation is done in a Matlab based LTE system level simulator. For the implementation of our protocol in the simulator, starting point was implementation of FFR-3 functionality, a prerequisite and a baseline for comparison with our protocol. Results are compared among three different setups of re-use1, FFR-3 and our protocol by varying number of overloaded eNodeBs for various numbers of scenarios and the comparison is made based on the center users’ throughput, edge users’ throughput. An estimation of time and protocol overhead is also presented. We have observed center users’ throughput gain up to 46%, at the cost of 9% edge users’ throughput loss, when compared to the classic FFR-3 scheme. The overall system throughput goes up to 26 % in heavily loaded scenario.   The utility of the protocol for an LTE system is evident from the results, which is supported by the dynamic and decentralized nature of the protocol. This ensures better utilization of spectrum, by temporarily allocating more bandwidth where it is needed more.
12

Optimum Power Allocation for Cooperative Communications

Fareed, Muhammad Mehboob January 2009 (has links)
Cooperative communication is a new class of wireless communication techniques in which wireless nodes help each other relay information and realize spatial diversity advantages in a distributed manner. This new transmission technique promises significant performance gains in terms of link reliability, spectral efficiency, system capacity, and transmission range. Analysis and design of cooperative communication wireless systems have been extensively studied over the last few years. The introduction and integration of cooperative communication in next generation wireless standards will lead to the design of an efficient and reliable fully-distributed wireless network. However, there are various technical challenges and open issues to be resolved before this promising concept becomes an integral part of the modern wireless communication devices. A common assumption in the literature on cooperative communications is the equal distribution of power among the cooperating nodes. Optimum power allocation is a key technique to realize the full potentials of relay-assisted transmission promised by the recent information-theoretic results. In this dissertation, we present a comprehensive framework for power allocation problem. We investigate the error rate performance of cooperative communication systems and further devise open-loop optimum power allocation schemes to optimize the performance. By exploiting the information about the location of cooperating nodes, we are able to demonstrate significant improvements in the system performance. In the first part of this dissertation, we consider single-relay systems with amplify-and-forward relaying. We derive upper bounds for bit error rate performance assuming various cooperation protocols and minimize them under total power constraint. In the second part, we consider a multi-relay network with decode-and-forward relaying. We propose a simple relay selection scheme for this multi-relay system to improve the throughput of the system, further optimize its performance through power allocation. Finally, we consider a multi-source multi-relay broadband cooperative network. We derive and optimize approximate symbol error rate of this OFDMA (orthogonal frequency division multiple access) system.
13

Power Allocation Scheme in Multi-Hop MIMO Amplify-and-Forward Relay Networks

Chen, Jing-Yu 11 July 2011 (has links)
With perfect channel state information at all the transmission terminals, the asymptotic capacity of multi-hop multiple-input multiple-output(MIMO) amplify-andforward(AF) relay channels is derived. Although the derivation is based on the assumption of a large number of antennas, simulation results show that the derived expression is surprisingly accurate for even a small number of antennas, and may even be superior to existing results. In addition, based on the asymptotic result, we present different power allocation schemes to (i) minimization the transmit power; (ii) maximization the network throughput; (iii) minimization the transmit power over all source. Fortunately, the proposed power allocation problems can be formulated using geometric programming(GP). Therefore, the optimal power distribution among the multi-hop relay can be obtained efficiently. For multiuser scenarios, since it is possible that the QoS of each user cannot be satisfied simultaneously, we study jointly admission control and power allocation optimization problem. This joint problem is NP-hard. Therefor, we propose an iterative algorithm to reduced the complexity.
14

Power Allocation Based on Limited Feedback in DF Cooperative and Cognitive Radio Networks

Li, Jia-Chi 03 August 2012 (has links)
This thesis investigates cooperative communication under the framework of cognitive radio network, which consists of primary and secondary users(PU & SU). The cooperative and cognitive radio network (CCR) adopts overlay dynamic spectrum access, That is, the SU simultaneously assists PU¡¦s transmission and transmits its own message using spectrum shared by primary user. The secondary user adopts decode-and-forward (DF) relaying to assist the primary user in transmitting message. With secondary user¡¦s assistance, the cooperative system can be treat as an equivalent multiple input single output (MISO) system to attain the spatial diversity of the primary user. The virtual MISO system can reduce the outage probability and enhance the transmission reliability. Under the requirement on primary user's transmission quality, secondary user transmits both user¡¦s signals simultaneously, so that the secondary acquires authority to access spectrum. Based on limited feedback regarding SNR of link between primary transmitter and receiver, secondary user allocates transmission power of primary signal and secondary signal to increase throughput and spectrum efficiency of SU subject to satisfying PU¡¦s outage constraint.
15

Resource allocation for OFDM-based cognitive radio systems

Zhang, Yonghong 05 1900 (has links)
Cognitive radio (CR) is a novel wireless communication approach that may alleviate the looming spectrum-shortage crisis. Orthogonal frequency division multiplexing (OFDM) is an attractive modulation candidate for CR systems. In this thesis, we study resource allocation (RA) for OFDM-based CR systems using both aggressive and protective sharing. In aggressive sharing, cognitive radio users (CRUs) can share both non-active and active primary user (PU) bands. We develop a model that describes aggressive sharing, and formulate a corresponding multidimensional knapsack problem (MDKP). Low-complexity suboptimal RA algorithms are proposed for both single and multiple CRU systems. A simplified model is proposed which provides a faster suboptimal solution. Simulation results show that the proposed suboptimal solutions are close to optimal, and that aggressive sharing of the whole band can provide a substantial performance improvement over protective sharing, which makes use of only the non-active PU bands. Although aggressive sharing generally yields a higher spectrum-utilization efficiency than protective sharing, aggressive sharing may not be feasible in some situations. In such cases, sharing only non-active PU bands is more appropriate. When there are no fairness or quality of service (QoS) considerations among CRUs, both theoretical analysis and simulation results show that plain equal power allocation (PEPA) yields similar performance as optimal power allocation in a multiuser OFDM-based CR system. We propose a low-complexity discrete bit PEPA algorithm. To improve spectrum-utilization efficiency, while considering the time-varying nature of the available spectrum as well as the fading characteristics of wireless communication channels and providing QoS provisioning and fairness among users, this thesis introduces the following novel algorithms: (1) a distributed RA algorithm that provides both fairness and efficient spectrum usage for ad hoc systems; (2) a RA algorithm for non-real-time (NRT) services that maintains average user rates proportionally on the downlink of multiuser OFDM-based CR systems; and (3) cross-layer RA algorithms for the downlink of multiuser OFDM-based CR systems for both real-time (RT) services and mixed (RT and NRT) services. Simulation results show that the proposed algorithms provide satisfactory QoS to all supported services and perform better than existing algorithms designed for multiuser OFDM systems.
16

Power Allocation in Cooperative Space-Time Coded Wireless Relay Networks

Aasem, Alyahya 29 August 2011 (has links)
Cooperative communications is a new wireless networking paradigm that allows networking nodes to collaborate through distributed transmission and signal processing to implement spatial and time signal diversity to combat the effects of fading channels. These systems exploit the wireless broadcast advantage, where transmissions from an omnidirectional antenna can be received by networking nodes that lie within its communication range. Specifically, in cooperative relaying systems the source broadcasts a message to a number of cooperative relays, which in turn resend a processed version of the information to the intended destination nodes, emulating antenna array effects. The destination nodes combine the signals received from the collaborating relays, either to increase the capacity of communication links or to increase the reliability of transmissions between the source and the destination. This is accomplished with an approach similar to that used in recently introduced space-time coding techniques for multiple-input multiple-output (MIMO) communication systems.
17

Routing Strategies for Multihop Wireless Relaying Networks

Babaee, Ramin Unknown Date
No description available.
18

Routing Strategies for Multihop Wireless Relaying Networks

Babaee, Ramin 06 1900 (has links)
Multihop routing is an effective method for establishing connectivity between the nodes of a network. End-to-end outage probability and total power consumption are applied as the optimization criteria for routing protocol design in multihop networks based on the local channel state information measurement at the nodes of a network. The analysis shows that employing instantaneous channel state information in routing design results in significant performance improvement of multihop communication, e.g., achieving full diversity order when the optimization criterion is outage performance. The routing metrics derived from the optimization problems cannot be optimized in a distributed manner. Establishing an alternate framework, the metrics obtained are converted into new composite metrics, which satisfy the optimality and convergence requirements for implementation in distributed environments. The analysis shows that the running time of the proposed distributed algorithm is bounded by a polynomial. / Communications
19

Resource allocation for OFDM-based cognitive radio systems

Zhang, Yonghong 05 1900 (has links)
Cognitive radio (CR) is a novel wireless communication approach that may alleviate the looming spectrum-shortage crisis. Orthogonal frequency division multiplexing (OFDM) is an attractive modulation candidate for CR systems. In this thesis, we study resource allocation (RA) for OFDM-based CR systems using both aggressive and protective sharing. In aggressive sharing, cognitive radio users (CRUs) can share both non-active and active primary user (PU) bands. We develop a model that describes aggressive sharing, and formulate a corresponding multidimensional knapsack problem (MDKP). Low-complexity suboptimal RA algorithms are proposed for both single and multiple CRU systems. A simplified model is proposed which provides a faster suboptimal solution. Simulation results show that the proposed suboptimal solutions are close to optimal, and that aggressive sharing of the whole band can provide a substantial performance improvement over protective sharing, which makes use of only the non-active PU bands. Although aggressive sharing generally yields a higher spectrum-utilization efficiency than protective sharing, aggressive sharing may not be feasible in some situations. In such cases, sharing only non-active PU bands is more appropriate. When there are no fairness or quality of service (QoS) considerations among CRUs, both theoretical analysis and simulation results show that plain equal power allocation (PEPA) yields similar performance as optimal power allocation in a multiuser OFDM-based CR system. We propose a low-complexity discrete bit PEPA algorithm. To improve spectrum-utilization efficiency, while considering the time-varying nature of the available spectrum as well as the fading characteristics of wireless communication channels and providing QoS provisioning and fairness among users, this thesis introduces the following novel algorithms: (1) a distributed RA algorithm that provides both fairness and efficient spectrum usage for ad hoc systems; (2) a RA algorithm for non-real-time (NRT) services that maintains average user rates proportionally on the downlink of multiuser OFDM-based CR systems; and (3) cross-layer RA algorithms for the downlink of multiuser OFDM-based CR systems for both real-time (RT) services and mixed (RT and NRT) services. Simulation results show that the proposed algorithms provide satisfactory QoS to all supported services and perform better than existing algorithms designed for multiuser OFDM systems. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
20

Optimization of Modulation Constrained Digital Transmission Systems

Han, Yu January 2018 (has links)
The regular waterfilling(WF) policy maximizes the mutual information of parallel channels, when the inputs are Gaussian. However, Gaussian input is ideal, which does not exist in reality. Discrete constellations are usually used instead, such as $ M $-PAM and $ M $-QAM. As a result, the mercury/waterfilling (MWF) policy is introduced, which is a generalization of the regular WF. The MWF applies to inputs with arbitrary distributions, while the regular WF only applies to Gaussian inputs. The MWF-based optimal power allocation (OPA) is presented, for which an algorithm called the internal/external bisection method is introduced. The constellation-constrained capacity is discussed in the thesis, where explicit expressions are presented. The expression contains an integral, which does not have a closed-form solution. However, it can be evaluated via the Monte Carlo method. An approximation of the constellation-constrained capacity based on the sphere packing method is introduced, whose OPA is a convex optimization problem. The CVX was used initially, but it did not generate satisfactory results. Therefore, the bisection method is used instead. Capacities of the MWF and its sphere packing approximation are evaluated for various cases, and compared with each other. It turns out the sphere packing approximation has similar performances to the MWF, which validates the approximation. Unlike the MWF, the sphere packing approximation does not suffer from the loss of precision due to the structure of MMSE functions, which demonstrates its robustness.

Page generated in 0.1181 seconds