Spelling suggestions: "subject:"power distribution systems"" "subject:"lower distribution systems""
1 |
Harmonic estimation and source identification in power distribution systems using observersUjile, Awajiokiche January 2015 (has links)
With advances in technology and the increasing use of power electronic components in the design of household and industrial equipment, harmonic distortion has become one of the major power quality problems in power systems. Identifying the harmonic sources and quantifying the contributions of these harmonic sources provides utility companies with the information they require to effectively mitigate harmonics in the system. This thesis proposes the use of observers for harmonic estimation and harmonic source identification. An iterative observer algorithm is designed for performing harmonic estimation in measured voltage or current signals taken from a power distribution system. The algorithm is based on previous observer designs for estimating the power system states at the fundamental frequency. Harmonic estimation is only carried out when the total harmonic distortion (THD) exceeds a specified threshold. In addition, estimation can be performed on multiple measurements simultaneously. Simulations are carried out on an IEEE distribution test feeder. A number of scenarios such as changes in harmonic injections with time, variations in fundamental frequency and measurement noise are simulated to verify the validity and robustness of the proposed iterative observer algorithm. Furthermore, an observer-based algorithm is proposed for identifying the harmonic sources in power distribution systems. The observer is developed to estimate the system states for a combination of suspicious nodes and the estimation error is analysed to verify the existence of harmonic sources in the specified node combinations. This method is applied to the identification of both single and multiple harmonic sources. The response of the observer-based algorithm to time varying load parameters and variations in harmonic injections with time is investigated and the results show that the proposed harmonic source identification algorithm is able to adapt to these changes. In addition, the presence of time delay in power distribution system measurements is taken into consideration when identifying harmonic sources. An observer is designed to estimate the system states for the case of a single time delay as well as multiple delays in the measurements. This observer is then incorporated into the observer-based harmonic source identification algorithm to identify harmonic sources in the presence of delayed measurements. Simulation results show that irrespective of the time delay in the measurements, the algorithm accurately identifies the harmonic sources in the power distribution system.
|
2 |
Large-scale coalition formation: application in power distribution systemsJanovsky, Pavel January 1900 (has links)
Doctor of Philosophy / Department of Computing and Information Sciences / Scott A. DeLoach / Coalition formation is a key cooperative behavior of a system of multiple autonomous
agents. When the capabilities of individual agents are not su fficient for the improvement of
well-being of the individual agents or of the entire system, the agents can bene t by joining
forces together in coalitions. Coalition formation is a technique for finding coalitions that
are best fi tted to achieve individual or group goals. This is a computationally expensive
task because often all combinations of agents have to be considered in order to find the best
assignments of agents to coalitions. Previous research has therefore focused mainly on small-scale
or otherwise restricted systems. In this thesis we study coalition formation in large-scale
multi-agent systems. We propose an approach for coalition formation based on multi-agent
simulation. This approach allows us to find coalitions in systems with thousands of agents.
It also lets us modify behaviors of individual agents in order to better match a specific
coalition formation application. Finally, our approach can consider both social welfare of
the multi-agent system and well-being of individual self-interested agents.
Power distribution systems are used to deliver electric energy from the transmission
system to households. Because of the increased availability of distributed generation using
renewable resources, push towards higher use of renewable energy, and increasing use of
electric vehicles, the power distribution systems are undergoing signi ficant changes towards
active consumers who participate in both supply and demand sides of the electricity market
and the underlying power grid. In this thesis we address the ongoing change in power
distribution systems by studying how the use of renewable energy can be increased with the
help of coalition formation. We propose an approach that lets renewable generators, which
face uncertainty in generation prediction, to form coalitions with energy stores, which on the
other hand are always able to deliver the committed power. These coalitions help decrease
the uncertainty of the power generation of renewable generators, consequently allowing the
generators to increase their use of renewable energy while at the same time increasing their
pro fits. Energy stores also bene t from participating in coalitions with renewable generators,
because they receive payments from the generators for the availability of their power at
speci fic time slots. We first study this problem assuming no physical constraints of the
underlying power grid. Then we analyze how coalition formation of renewable generators
and energy stores in a power grid with physical constraints impacts the state of the grid,
and we propose agent behavior that leads to increase in use of renewable energy as well as
maintains stability of the grid.
|
3 |
A genetic algorithm for power distribution system planningRivas-Davalos, Francisco January 2004 (has links)
The planning of distribution systems consists in determining the optimum site and size of new substations and feeders in order to satisfy the future power demand with minimum investment and operational costs and an acceptable level of reliability. This problem is a combinatorial, non-linear and constrained optimization problem. Several solution methods based on genetic algorithms have been reported in the literature; however, some of these methods have been reported with applications to small systems while others have long solution time. In addition, the vast majority of the developed methods handle planning problems simplifying them as single-objective problems but, there are some planning aspects that can not be combined into a single scalar objective; therefore, they require to be treated separately. The cause of these shortcomings is the poor representation of the potential solutions and their genetic operators This thesis presents the design of a genetic algorithm using a direct representation technique and specialized genetic operators for power distribution system expansion planning problems. These operators effectively preserve and exploit critical configurations that contribute to the optimization of the objective function. The constraints of the problems are efficiently handle with new strategies. The genetic algorithm was tested on several theoretical and real large-scale power distribution systems. Problems of network reconfiguration for loss reduction were also included in order to show the potential of the algorithm to resolve operational problems. Both single-objective and multi-objective formulations were considered in the tests. The results were compared with results from other heuristic methods such as ant colony system algorithms, evolutionary programming, differential evolution and other genetic algorithms reported in the literature. From these comparisons it was concluded that the proposed genetic algorithm is suitable to resolve problems of largescale power distribution system planning. Moreover, the algorithm proved to be effective, efficient and robust with better performance than other previous methods.
|
4 |
Modeling the Effect of Hurricanes on Power Distribution SystemsChanda, Suraj 2011 August 1900 (has links)
There are many calamitous events such as earthquakes, hurricanes, tsunamis etc. that occur suddenly and cause great loss of life, damage, or hardship. Hurricanes cause significant damage to power distribution systems, resulting in prolonged customer outages and excessive delays in the reconstruction efforts. Accordingly, predicting the effects of power outages on the performance of power distribution systems is of major importance to government agencies, utilities, and customers. Unfortunately, the current tools to predict the performance of power distribution systems during catastrophic events are limited in both the performance measures considered, as well as in their ability to model real systems.
The main goal of this research is to develop a methodology for simulating hurricanes of different intensity on power distribution systems of small and medium size cities. Our study includes a detailed comparison between the engineering-based and connectivity-based models of power distribution systems, as well as the impact of power re-routing algorithms on the system reliability. Our approach is based on fragility curves that capture the ability of the system to withstand a range of wind speeds. In addition, we develop a multiscale approach that facilitates efficient computation of fragility curves for large cities. With this approach, hurricanes are simulated over small zones of a city and fragility curves are obtained. These are used to estimate the damage for identical zones throughout the city. To validate our techniques, two testbeds, Micropolis and Mesopolis, were used. Micropolis is synthetic model for a small city and Mesopolis for a big city. Obtained results have validated our approach and have shown that they can be used to effectively predict hurricane damage.
|
5 |
Estudo da influência do desequilíbrio e da resistência de falta em sistemas de distribuição de energia elétrica faltososFerraz, Renato Gonçalves January 2010 (has links)
As metodologias de análise de curto-circuito aplicadas a sistemas elétricos de potência apresentaram uma considerável evolução ao longo do último século e foram desenvolvidas inicialmente para o estudo de faltas em sistemas de transmissão de energia elétrica. Estes sistemas possuem características equilibradas e utilizam o método de componentes simétricas para a estimativa do estado do sistema no período durante a falta. O emprego deste método para a determinação das correntes de cur-tos-circuitos em sistemas desequilibrados, por requerer simplificações e considera-ções que viabilizem sua aplicação, incorre em erros que crescem com o aumento do grau de desequilíbrio dos sistemas. Para o estudo de faltas em sistemas de distribui-ção de energia elétrica, que são inerentemente desequilibrados, a aplicação do mé-todo de componentes de fase permite a obtenção de resultados mais precisos, pois considera modelos que representam o desequilíbrio do sistema. Este trabalho apre-senta um estudo analítico e numérico que analisa a influência dos desequilíbrios e da resistência de falta no cálculo das correntes de curtos-circuitos em sistemas de distri-buição empregando o método de componentes de fase, que constitui atualmente o estado da arte para o estudo de faltas nestes sistemas. A partir de um sistema de dis-tribuição simplificado, modelado com matrizes de impedâncias e admitâncias trifási-cas, calculadas na frequência fundamental do sistema, é apresentada uma equação matricial generalizada, que determina a corrente de falta que flui por uma impedância de falta, para uma dada condição faltosa. A equação proposta é analisada analítica e numericamente para o caso de faltas fase-terra. Simulações numéricas de estudos de caso em um sistema sem laterais ou cargas intermediárias, considerando diferentes graus de desequilíbrios e resistências de falta, apresentam resultados que quando comparados com os resultados para um sistema idealmente equilibrado mostram a influência que o efeito do desequilíbrio possui na determinação das correntes de curtos-circuitos e ratificam a contribuição do estudo proposto. / The approaches to short-circuit analysis of electric power systems have con-siderably improved over the last century. They were initially developed to study faults in electric power transmission systems, that have balanced characteristics and the symmetrical component method is used. As the use of this method to determine short-circuit currents in unbalanced systems requires simplifications and considera-tions to suit its application, it incurred a error increase as the systems unbalance de-gree grows. The phase components method allows more accurate results for faults study in electric power distribution systems which are inherently unbalanced as it takes into consideration models that represent the systems unbalance. Therefore an analytical and numerical study that analyses imbalance and fault resistance influence over short-circuits currents calculation in distribution systems is discussed in this work. The currently state-of-the-art method, phase components, is used to calculate faults in unbalanced systems. From an elementary distribution system modeled with three-phase impedances and admittances matrices, it is presented a general matrix equation that expresses the fault current that flows through a fault impedance due to certain fault conditions. The resulting equation is analytically and numerically ana-lysed for this fault type. Numerical simulations of a system with no lateral or inter-mediate loads, considering different imbalance degrees and fault resistances, gener-ate results that compared to the results of an ideally balanced system show the influ-ence of the systems unbalance on the fault.
|
6 |
Novos desenvolvimentos na localização de faltas em sistemas de distribuição de energia elétrica fundamentada na impedânciaSalim, Rodrigo Hartstein January 2008 (has links)
Apesar do crescente desenvolvimento das metodologias de localização de faltas fundamentadas na impedância para sistemas de distribuição de energia elétrica nas últimas décadas, alguns aspectos ainda carecem de progressos, especialmente frente à crescente necessidade de aumento da qualidade da energia elétrica entregue aos consumidores. Um destes aspectos diz respeito à consideração da capacitância das linhas de distribuição, efeito nunca dantes considerado para este fim pelas metodologias baseadas em impedância aparente. Assim sendo, o presente trabalho apresenta novos desenvolvimentos relativos à consideração do efeito capacitivo para as metodologias de localização de faltas fundamentadas na impedância para sistemas de distribuição de energia elétrica. O principal desenvolvimento apresentado é um novo equacionamento para fins de localização de faltas, que torna necessária a apresentação de outro desenvolvimento, o de um algoritmo de localização de faltas que considere a capacitância da linha. As novas equações são apresentadas para todos os tipos de faltas e constituem-se de equações polinomiais de segunda ordem em relação ao local da falta. De forma a entender a resposta destas equações frente a diferentes casos de faltas e determinar qual a solução fisicamente correta destas equações, as mesmas são analisadas sob três pontos de vista, a saber, matemático, físico, e numérico. Inicialmente estas equações são analisadas de forma analítica considerandose faltas em um mesmo local, mas com resistências diferentes. Posteriormente a mesma análise é realizada numericamente através de simulações computacionais. Os desenvolvimentos propostos são também submetidos a testes de faltas, simuladas computacionalmente em um sistema sem laterais ou cargas intermediárias. Os resultados obtidos são comparados frente a resultados obtidos também para outras metodologias que constituem atualmente o estado da arte em localização de faltas fundamentada na impedância para sistemas de distribuição de energia elétrica. Através destes resultados é possível mostrar a grande influência que o efeito capacitivo possui nestas metodologias, mesmo em sistemas aéreos de distribuição, e elucidar as grandes melhorias obtidas através dos desenvolvimentos propostos. / Despite the increasing development of impedance-based fault location techniques for electric power distribution systems in the last decades, some aspects still require to progress, especially with the increasing necessity of power quality enhancement. One of these aspects regards to the distribution line shunt admittance consideration, effect that has never been considered before by the impedance-based fault location methods for power distribution systems. In this way, this work presents further improvements regarding the capacitive effect consideration for impedance-based fault location methods for power distribution systems. The main improvement presented is the development of new fault location equations, which yield the necessity of another improvement, a modified fault location algorithm that also considers the line shunt admittance. The new equations are presented for all fault types and are constituted by second-order polynomials in relation to the fault location. In order to understand the response from these equations regarding different fault situations and determine which solution is the physically feasible one, these equations are analyzed from three different points of view, i.e., mathematical, physical, and numerical. First, the developed equations are analytically analyzed considering faults in one location with different fault resistances. After, the same analysis is numerically carried out through computational simulations. The performance of the proposed improvements are also evaluated through computational simulations of faults in a power distribution system without laterals or intermediate loads. The obtained results are compared with results from the current state-of-the-art impedance-based fault location methodologies for power distribution systems. Through these results it is possible to show the great effect that the line shunt admittance, even in aerial distribution systems, has on the existing fault location methodologies and also the great improvements brought by the proposed developments.
|
7 |
Novos desenvolvimentos na localização de faltas em sistemas de distribuição de energia elétrica fundamentada na impedânciaSalim, Rodrigo Hartstein January 2008 (has links)
Apesar do crescente desenvolvimento das metodologias de localização de faltas fundamentadas na impedância para sistemas de distribuição de energia elétrica nas últimas décadas, alguns aspectos ainda carecem de progressos, especialmente frente à crescente necessidade de aumento da qualidade da energia elétrica entregue aos consumidores. Um destes aspectos diz respeito à consideração da capacitância das linhas de distribuição, efeito nunca dantes considerado para este fim pelas metodologias baseadas em impedância aparente. Assim sendo, o presente trabalho apresenta novos desenvolvimentos relativos à consideração do efeito capacitivo para as metodologias de localização de faltas fundamentadas na impedância para sistemas de distribuição de energia elétrica. O principal desenvolvimento apresentado é um novo equacionamento para fins de localização de faltas, que torna necessária a apresentação de outro desenvolvimento, o de um algoritmo de localização de faltas que considere a capacitância da linha. As novas equações são apresentadas para todos os tipos de faltas e constituem-se de equações polinomiais de segunda ordem em relação ao local da falta. De forma a entender a resposta destas equações frente a diferentes casos de faltas e determinar qual a solução fisicamente correta destas equações, as mesmas são analisadas sob três pontos de vista, a saber, matemático, físico, e numérico. Inicialmente estas equações são analisadas de forma analítica considerandose faltas em um mesmo local, mas com resistências diferentes. Posteriormente a mesma análise é realizada numericamente através de simulações computacionais. Os desenvolvimentos propostos são também submetidos a testes de faltas, simuladas computacionalmente em um sistema sem laterais ou cargas intermediárias. Os resultados obtidos são comparados frente a resultados obtidos também para outras metodologias que constituem atualmente o estado da arte em localização de faltas fundamentada na impedância para sistemas de distribuição de energia elétrica. Através destes resultados é possível mostrar a grande influência que o efeito capacitivo possui nestas metodologias, mesmo em sistemas aéreos de distribuição, e elucidar as grandes melhorias obtidas através dos desenvolvimentos propostos. / Despite the increasing development of impedance-based fault location techniques for electric power distribution systems in the last decades, some aspects still require to progress, especially with the increasing necessity of power quality enhancement. One of these aspects regards to the distribution line shunt admittance consideration, effect that has never been considered before by the impedance-based fault location methods for power distribution systems. In this way, this work presents further improvements regarding the capacitive effect consideration for impedance-based fault location methods for power distribution systems. The main improvement presented is the development of new fault location equations, which yield the necessity of another improvement, a modified fault location algorithm that also considers the line shunt admittance. The new equations are presented for all fault types and are constituted by second-order polynomials in relation to the fault location. In order to understand the response from these equations regarding different fault situations and determine which solution is the physically feasible one, these equations are analyzed from three different points of view, i.e., mathematical, physical, and numerical. First, the developed equations are analytically analyzed considering faults in one location with different fault resistances. After, the same analysis is numerically carried out through computational simulations. The performance of the proposed improvements are also evaluated through computational simulations of faults in a power distribution system without laterals or intermediate loads. The obtained results are compared with results from the current state-of-the-art impedance-based fault location methodologies for power distribution systems. Through these results it is possible to show the great effect that the line shunt admittance, even in aerial distribution systems, has on the existing fault location methodologies and also the great improvements brought by the proposed developments.
|
8 |
Estudo da influência do desequilíbrio e da resistência de falta em sistemas de distribuição de energia elétrica faltososFerraz, Renato Gonçalves January 2010 (has links)
As metodologias de análise de curto-circuito aplicadas a sistemas elétricos de potência apresentaram uma considerável evolução ao longo do último século e foram desenvolvidas inicialmente para o estudo de faltas em sistemas de transmissão de energia elétrica. Estes sistemas possuem características equilibradas e utilizam o método de componentes simétricas para a estimativa do estado do sistema no período durante a falta. O emprego deste método para a determinação das correntes de cur-tos-circuitos em sistemas desequilibrados, por requerer simplificações e considera-ções que viabilizem sua aplicação, incorre em erros que crescem com o aumento do grau de desequilíbrio dos sistemas. Para o estudo de faltas em sistemas de distribui-ção de energia elétrica, que são inerentemente desequilibrados, a aplicação do mé-todo de componentes de fase permite a obtenção de resultados mais precisos, pois considera modelos que representam o desequilíbrio do sistema. Este trabalho apre-senta um estudo analítico e numérico que analisa a influência dos desequilíbrios e da resistência de falta no cálculo das correntes de curtos-circuitos em sistemas de distri-buição empregando o método de componentes de fase, que constitui atualmente o estado da arte para o estudo de faltas nestes sistemas. A partir de um sistema de dis-tribuição simplificado, modelado com matrizes de impedâncias e admitâncias trifási-cas, calculadas na frequência fundamental do sistema, é apresentada uma equação matricial generalizada, que determina a corrente de falta que flui por uma impedância de falta, para uma dada condição faltosa. A equação proposta é analisada analítica e numericamente para o caso de faltas fase-terra. Simulações numéricas de estudos de caso em um sistema sem laterais ou cargas intermediárias, considerando diferentes graus de desequilíbrios e resistências de falta, apresentam resultados que quando comparados com os resultados para um sistema idealmente equilibrado mostram a influência que o efeito do desequilíbrio possui na determinação das correntes de curtos-circuitos e ratificam a contribuição do estudo proposto. / The approaches to short-circuit analysis of electric power systems have con-siderably improved over the last century. They were initially developed to study faults in electric power transmission systems, that have balanced characteristics and the symmetrical component method is used. As the use of this method to determine short-circuit currents in unbalanced systems requires simplifications and considera-tions to suit its application, it incurred a error increase as the systems unbalance de-gree grows. The phase components method allows more accurate results for faults study in electric power distribution systems which are inherently unbalanced as it takes into consideration models that represent the systems unbalance. Therefore an analytical and numerical study that analyses imbalance and fault resistance influence over short-circuits currents calculation in distribution systems is discussed in this work. The currently state-of-the-art method, phase components, is used to calculate faults in unbalanced systems. From an elementary distribution system modeled with three-phase impedances and admittances matrices, it is presented a general matrix equation that expresses the fault current that flows through a fault impedance due to certain fault conditions. The resulting equation is analytically and numerically ana-lysed for this fault type. Numerical simulations of a system with no lateral or inter-mediate loads, considering different imbalance degrees and fault resistances, gener-ate results that compared to the results of an ideally balanced system show the influ-ence of the systems unbalance on the fault.
|
9 |
Estudo da influência do desequilíbrio e da resistência de falta em sistemas de distribuição de energia elétrica faltososFerraz, Renato Gonçalves January 2010 (has links)
As metodologias de análise de curto-circuito aplicadas a sistemas elétricos de potência apresentaram uma considerável evolução ao longo do último século e foram desenvolvidas inicialmente para o estudo de faltas em sistemas de transmissão de energia elétrica. Estes sistemas possuem características equilibradas e utilizam o método de componentes simétricas para a estimativa do estado do sistema no período durante a falta. O emprego deste método para a determinação das correntes de cur-tos-circuitos em sistemas desequilibrados, por requerer simplificações e considera-ções que viabilizem sua aplicação, incorre em erros que crescem com o aumento do grau de desequilíbrio dos sistemas. Para o estudo de faltas em sistemas de distribui-ção de energia elétrica, que são inerentemente desequilibrados, a aplicação do mé-todo de componentes de fase permite a obtenção de resultados mais precisos, pois considera modelos que representam o desequilíbrio do sistema. Este trabalho apre-senta um estudo analítico e numérico que analisa a influência dos desequilíbrios e da resistência de falta no cálculo das correntes de curtos-circuitos em sistemas de distri-buição empregando o método de componentes de fase, que constitui atualmente o estado da arte para o estudo de faltas nestes sistemas. A partir de um sistema de dis-tribuição simplificado, modelado com matrizes de impedâncias e admitâncias trifási-cas, calculadas na frequência fundamental do sistema, é apresentada uma equação matricial generalizada, que determina a corrente de falta que flui por uma impedância de falta, para uma dada condição faltosa. A equação proposta é analisada analítica e numericamente para o caso de faltas fase-terra. Simulações numéricas de estudos de caso em um sistema sem laterais ou cargas intermediárias, considerando diferentes graus de desequilíbrios e resistências de falta, apresentam resultados que quando comparados com os resultados para um sistema idealmente equilibrado mostram a influência que o efeito do desequilíbrio possui na determinação das correntes de curtos-circuitos e ratificam a contribuição do estudo proposto. / The approaches to short-circuit analysis of electric power systems have con-siderably improved over the last century. They were initially developed to study faults in electric power transmission systems, that have balanced characteristics and the symmetrical component method is used. As the use of this method to determine short-circuit currents in unbalanced systems requires simplifications and considera-tions to suit its application, it incurred a error increase as the systems unbalance de-gree grows. The phase components method allows more accurate results for faults study in electric power distribution systems which are inherently unbalanced as it takes into consideration models that represent the systems unbalance. Therefore an analytical and numerical study that analyses imbalance and fault resistance influence over short-circuits currents calculation in distribution systems is discussed in this work. The currently state-of-the-art method, phase components, is used to calculate faults in unbalanced systems. From an elementary distribution system modeled with three-phase impedances and admittances matrices, it is presented a general matrix equation that expresses the fault current that flows through a fault impedance due to certain fault conditions. The resulting equation is analytically and numerically ana-lysed for this fault type. Numerical simulations of a system with no lateral or inter-mediate loads, considering different imbalance degrees and fault resistances, gener-ate results that compared to the results of an ideally balanced system show the influ-ence of the systems unbalance on the fault.
|
10 |
Novos desenvolvimentos na localização de faltas em sistemas de distribuição de energia elétrica fundamentada na impedânciaSalim, Rodrigo Hartstein January 2008 (has links)
Apesar do crescente desenvolvimento das metodologias de localização de faltas fundamentadas na impedância para sistemas de distribuição de energia elétrica nas últimas décadas, alguns aspectos ainda carecem de progressos, especialmente frente à crescente necessidade de aumento da qualidade da energia elétrica entregue aos consumidores. Um destes aspectos diz respeito à consideração da capacitância das linhas de distribuição, efeito nunca dantes considerado para este fim pelas metodologias baseadas em impedância aparente. Assim sendo, o presente trabalho apresenta novos desenvolvimentos relativos à consideração do efeito capacitivo para as metodologias de localização de faltas fundamentadas na impedância para sistemas de distribuição de energia elétrica. O principal desenvolvimento apresentado é um novo equacionamento para fins de localização de faltas, que torna necessária a apresentação de outro desenvolvimento, o de um algoritmo de localização de faltas que considere a capacitância da linha. As novas equações são apresentadas para todos os tipos de faltas e constituem-se de equações polinomiais de segunda ordem em relação ao local da falta. De forma a entender a resposta destas equações frente a diferentes casos de faltas e determinar qual a solução fisicamente correta destas equações, as mesmas são analisadas sob três pontos de vista, a saber, matemático, físico, e numérico. Inicialmente estas equações são analisadas de forma analítica considerandose faltas em um mesmo local, mas com resistências diferentes. Posteriormente a mesma análise é realizada numericamente através de simulações computacionais. Os desenvolvimentos propostos são também submetidos a testes de faltas, simuladas computacionalmente em um sistema sem laterais ou cargas intermediárias. Os resultados obtidos são comparados frente a resultados obtidos também para outras metodologias que constituem atualmente o estado da arte em localização de faltas fundamentada na impedância para sistemas de distribuição de energia elétrica. Através destes resultados é possível mostrar a grande influência que o efeito capacitivo possui nestas metodologias, mesmo em sistemas aéreos de distribuição, e elucidar as grandes melhorias obtidas através dos desenvolvimentos propostos. / Despite the increasing development of impedance-based fault location techniques for electric power distribution systems in the last decades, some aspects still require to progress, especially with the increasing necessity of power quality enhancement. One of these aspects regards to the distribution line shunt admittance consideration, effect that has never been considered before by the impedance-based fault location methods for power distribution systems. In this way, this work presents further improvements regarding the capacitive effect consideration for impedance-based fault location methods for power distribution systems. The main improvement presented is the development of new fault location equations, which yield the necessity of another improvement, a modified fault location algorithm that also considers the line shunt admittance. The new equations are presented for all fault types and are constituted by second-order polynomials in relation to the fault location. In order to understand the response from these equations regarding different fault situations and determine which solution is the physically feasible one, these equations are analyzed from three different points of view, i.e., mathematical, physical, and numerical. First, the developed equations are analytically analyzed considering faults in one location with different fault resistances. After, the same analysis is numerically carried out through computational simulations. The performance of the proposed improvements are also evaluated through computational simulations of faults in a power distribution system without laterals or intermediate loads. The obtained results are compared with results from the current state-of-the-art impedance-based fault location methodologies for power distribution systems. Through these results it is possible to show the great effect that the line shunt admittance, even in aerial distribution systems, has on the existing fault location methodologies and also the great improvements brought by the proposed developments.
|
Page generated in 0.1353 seconds