• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimizing Applications and Message-Passing Libraries for the QPACE Architecture

Wunderlich, Simon 18 July 2012 (has links) (PDF)
The goal of the QPACE project is to build a novel cost-efficient massive parallel supercomputer optimized for LQCD (Lattice Quantum Chromodynamics) applications. Unlike previous projects which use custom ASICs, this is accomplished by using the general purpose multi-core CPU PowerXCell 8i processor tightly coupled with a custom network processor implemented on a modern FPGA. The heterogeneous architecture of the PowerXCell 8i processor and its core-independent OS-bypassing access to the custom network hardware and application-oriented 3D torus topology pose interesting challenges for the implementation of the applications. This work will describe and evaluate the implementation possibilities of message passing APIs: the more general MPI, and the more QCD-oriented QMP, and their performance in PPE centric or SPE centric scenarios. These results will then be employed to optimize HPL for the QPACE architecture. Finally, the developed approaches and concepts will be briefly discussed regarding their applicability to heterogeneous node/network architectures as is the case in the "High-speed Network Interface with Collective Operation Support for Cell BE (NICOLL)" project.
2

Optimizing Applications and Message-Passing Libraries for the QPACE Architecture

Wunderlich, Simon 27 March 2009 (has links)
The goal of the QPACE project is to build a novel cost-efficient massive parallel supercomputer optimized for LQCD (Lattice Quantum Chromodynamics) applications. Unlike previous projects which use custom ASICs, this is accomplished by using the general purpose multi-core CPU PowerXCell 8i processor tightly coupled with a custom network processor implemented on a modern FPGA. The heterogeneous architecture of the PowerXCell 8i processor and its core-independent OS-bypassing access to the custom network hardware and application-oriented 3D torus topology pose interesting challenges for the implementation of the applications. This work will describe and evaluate the implementation possibilities of message passing APIs: the more general MPI, and the more QCD-oriented QMP, and their performance in PPE centric or SPE centric scenarios. These results will then be employed to optimize HPL for the QPACE architecture. Finally, the developed approaches and concepts will be briefly discussed regarding their applicability to heterogeneous node/network architectures as is the case in the "High-speed Network Interface with Collective Operation Support for Cell BE (NICOLL)" project.

Page generated in 0.0208 seconds