Spelling suggestions: "subject:"préservation dde lla confidentiality"" "subject:"préservation dde lla confidential""
1 |
Préservation de la confidentialité des données externalisées dans le traitement des requêtes top-k / Privacy preserving top-k query processing over outsourced dataMahboubi, Sakina 21 November 2018 (has links)
L’externalisation de données d’entreprise ou individuelles chez un fournisseur de cloud, par exemple avec l’approche Database-as-a-Service, est pratique et rentable. Mais elle introduit un problème majeur: comment préserver la confidentialité des données externalisées, tout en prenant en charge les requêtes expressives des utilisateurs. Une solution simple consiste à crypter les données avant leur externalisation. Ensuite, pour répondre à une requête, le client utilisateur peut récupérer les données cryptées du cloud, les décrypter et évaluer la requête sur des données en texte clair (non cryptées). Cette solution n’est pas pratique, car elle ne tire pas parti de la puissance de calcul fournie par le cloud pour évaluer les requêtes.Dans cette thèse, nous considérons un type important de requêtes, les requêtes top-k, et le problème du traitement des requêtes top-k sur des données cryptées dans le cloud, tout en préservant la vie privée. Une requête top-k permet à l’utilisateur de spécifier un nombre k de tuples les plus pertinents pour répondre à la requête. Le degré de pertinence des tuples par rapport à la requête est déterminé par une fonction de notation.Nous proposons d’abord un système complet, appelé BuckTop, qui est capable d’évaluer efficacement les requêtes top-k sur des données cryptées, sans avoir à les décrypter dans le cloud. BuckTop inclut un algorithme de traitement des requêtes top-k qui fonctionne sur les données cryptées, stockées dans un nœud du cloud, et retourne un ensemble qui contient les données cryptées correspondant aux résultats top-k. Il est aidé par un algorithme de filtrage efficace qui est exécuté dans le cloud sur les données chiffrées et supprime la plupart des faux positifs inclus dans l’ensemble renvoyé. Lorsque les données externalisées sont volumineuses, elles sont généralement partitionnées sur plusieurs nœuds dans un système distribué. Pour ce cas, nous proposons deux nouveaux systèmes, appelés SDB-TOPK et SD-TOPK, qui permettent d’évaluer les requêtes top-k sur des données distribuées cryptées sans avoir à les décrypter sur les nœuds où elles sont stockées. De plus, SDB-TOPK et SD-TOPK ont un puissant algorithme de filtrage qui filtre les faux positifs autant que possible dans les nœuds et renvoie un petit ensemble de données cryptées qui seront décryptées du côté utilisateur. Nous analysons la sécurité de notre système et proposons des stratégies efficaces pour la mettre en œuvre.Nous avons validé nos solutions par l’implémentation de BuckTop, SDB-TOPK et SD-TOPK, et les avons comparé à des approches de base par rapport à des données synthétiques et réelles. Les résultats montrent un excellent temps de réponse par rapport aux approches de base. Ils montrent également l’efficacité de notre algorithme de filtrage qui élimine presque tous les faux positifs. De plus, nos systèmes permettent d’obtenir une réduction significative des coûts de communication entre les nœuds du système distribué lors du calcul du résultat de la requête. / Outsourcing corporate or individual data at a cloud provider, e.g. using Database-as-a-Service, is practical and cost-effective. But it introduces a major problem: how to preserve the privacy of the outsourced data, while supporting powerful user queries. A simple solution is to encrypt the data before it is outsourced. Then, to answer a query, the user client can retrieve the encrypted data from the cloud, decrypt it, and evaluate the query over plaintext (non encrypted) data. This solution is not practical, as it does not take advantage of the computing power provided by the cloud for evaluating queries.In this thesis, we consider an important kind of queries, top-k queries,and address the problem of privacy-preserving top-k query processing over encrypted data in the cloud.A top-k query allows the user to specify a number k, and the system returns the k tuples which are most relevant to the query. The relevance degree of tuples to the query is determined by a scoring function.We first propose a complete system, called BuckTop, that is able to efficiently evaluate top-k queries over encrypted data, without having to decrypt it in the cloud. BuckTop includes a top-k query processing algorithm that works on the encrypted data, stored at one cloud node,and returns a set that is proved to contain the encrypted data corresponding to the top-k results. It also comes with an efficient filtering algorithm that is executed in the cloud on encypted data and removes most of the false positives included in the set returned.When the outsourced data is big, it is typically partitioned over multiple nodes in a distributed system. For this case, we propose two new systems, called SDB-TOPK and SD-TOPK, that can evaluate top-k queries over encrypted distributed data without having to decrypt at the nodes where they are stored. In addition, SDB-TOPK and SD-TOPK have a powerful filtering algorithm that filters the false positives as much as possible in the nodes, and returns a small set of encrypted data that will be decrypted in the user side. We analyze the security of our system, and propose efficient strategies to enforce it.We validated our solutions through implementation of BuckTop , SDB-TOPK and SD-TOPK, and compared them to baseline approaches over synthetic and real databases. The results show excellent response time compared to baseline approaches. They also show the efficiency of our filtering algorithm that eliminates almost all false positives. Furthermore, our systems yieldsignificant reduction in communication cost between the distributed system nodes when computing the query result.
|
2 |
Vers une plateforme holistique de protection de la vie privée dans les services géodépendantsSahnoune, Zakaria 04 1900 (has links)
No description available.
|
Page generated in 0.1878 seconds