• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variational Calculation of Optimum Dispersion Compensation for Nonlinear Dispersive Fibers

Wongsangpaiboon, Natee 22 May 2000 (has links)
In fiber optic communication systems, the main linear phenomenon that causes optical pulse broadening is called dispersion, which limits the transmission data rate and distance. The principle nonlinear effect, called self-phase modulation, can also limit the system performance by causing spectral broadening. Hence, to achieve the optimal system performance, high data rate and low bandwidth occupancy, those effects must be overcome or compensated. In a nonlinear dispersive fiber, properties of a transmitting pulse: width, chirp, and spectra, are changed along the way and are complicated to predict. Although there is a well-known differential equation, called the Nonlinear Schrodinger Equation, which describes the complex envelope of the optical pulse subject to the nonlinear and dispersion effects, the equation cannot generally be solved in closed form. Although, the split-step Fourier method can be used to numerically determine pulse properties from this nonlinear equation, numerical results are time consuming to obtain and provide limited insight into functional relationships and how to design input pulses. One technique, called the Variational Method, is an approximate but accurate way to solve the nonlinear Schrodinger equation in closed form. This method is exploited throughout this thesis to study the pulse properties in a nonlinear dispersive fiber, and to explore ways to compensate dispersion for both single link and concatenated link systems. In a single link system, dispersion compensation can be achieved by appropriately pre-chirping the input pulse. In this thesis, the variational method is then used to calculate the optimal values of pre-chirping, in which: (i) the initial pulse and spectral width are restored at the output, (ii) output pulse width is minimized, (iii) the output pulse is transform limited, and (iv) the output time-bandwidth product is minimized. For a concatenated link system, the variational calculation is used to (i) show the symmetry of pulse width around the chirp-free point in the plot of pulse width versus distance, (ii) find the optimal dispersion constant of the dispersion compensation fiber in the nonlinear dispersive regime, and (iii) suggest the dispersion maps for two and four link systems in which initial conditions (or parameters) are restored at the output end. The accuracy of the variational approximation is confirmed by split-step Fourier simulation throughout this thesis. In addition, the comparisons show that the accuracy of the variational method improves as the nonlinear effects become small. / Master of Science
2

Dual Electroabsorption Modulated Laser: étude et caractérisation d'une nouvelle source optique laser-modulateur intégrés pour les transmissions numériques haut-débit et les applications Radio-sur-Fibre.

Petit Ferrufino, Juan Mauricio 29 September 2010 (has links) (PDF)
Cette étude se situe au niveau de la couche physique d'un système de transmission optique terrestre de type réseau métropolitain. Il s'agit d'y intégrer un composant, le laser modulateur intégrés (Electroabsorption Modulated Laser ou EML) du III-V Lab Alcatel-Thales, un laboratoire industriel de composants optoélectroniques. Et ceci pour en diminuer la complexité par pré-distorsion apportée par la modulation du laser. Les distances de transmission étant limités par des phénomènes physiques intrinsèques aux fibres optiques, le but est de développer un schéma de fonctionnement des EML pouvant dépasser les limites fixées par la dispersion chromatique des fibres et ses effets non-linéaires, principe qui a été démontré avec un laser et un modulateur discret mais jamais avec un composant intégré. La technique est basée sur une pré-compensation de la dispersion chromatique en appliquant une modulation sur le laser de l'EML qui génère la porteuse optique préchirpée qui est ensuite modulée par le modulateur à électro-absorption, raison du nom donné à l'EML : Dual Electroabsorption Modulated Laser ou D-EML. C'est l'axe majeur de recherche car il met en évidence le principe de la compensation de dispersion permettant d'incrémenter les distances de transmission de 80 km à 160 km pour la première fois avec un composant monolithique. Une application Radio-sur-Fibre pour les réseaux d'accès a été explorée, elle est basée sur une modulation duale analogique, permettant l'extinction d'une raie de modulation optique générant ainsi un signal à bande latérale unique Single Side Band. Ce format permet de transporter des signaux I-Q très haut-débit sur des distances de plus de 100 km.

Page generated in 0.0447 seconds