• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SEM image processing as an alternative method to determine chromite pre-reduction / Given Terrance Mpho Mohale

Mohale, Given Terrance Mpho January 2015 (has links)
Ferrochrome (FeCr) is a crude alloy containing chromium (Cr) and iron (Fe). FeCr is mainly used for the production of stainless steel, which is an important modern-day alloy. FeCr is produced from chromite ore through various smelting methods. In this study, the focus was on the pelletised chromite pre-reduction process, which is also referred to as the solid state reduction of chromite. In this process, fine chromite ore, a clay binder and a carbon reductant are dry milled, agglomerated (pelletised) and pre-reduced (solid state reduction) in a rotary kiln. The pre-reduced pellets are then charged hot, immediately after exiting the rotary kiln, into a closed submerged arc furnace (SAF). This production process option has the lowest specific energy consumption (SEC), i.e. MWh/ton FeCr produced, of all the FeCr production processes that are commercially applied. Other advantages associated with the application of the pelletised chromite pre-reduction process are that it eliminates the use of chromite fines, has a high Cr recovery, and produces low sulphur- (S) and silicon (Si)-containing FeCr. The main disadvantage of the pelletised chromite pre-reduction process is that it requires extensive metallurgical control due to the variances in the levels of pre-reduction achieved and carbon content of the pre-reduced pelletised furnace feed material. This implies that the metallurgical carbon balance has to be changed regularly to prevent the process from becoming carbon deficient (also referred to as ‘under coke’) or over carbon (also referred to as ‘over coke’). The analytical technique currently applied to determine the level of chromite pre-reduction is time consuming, making it difficult and expensive to deal with large numbers of samples. In an attempt to develop a technique that would be faster to determine the level of chromite pre-reduction, a new analytical method using a combination of scanning electron microscopy (SEM), image processing and computational techniques was investigated in this study. Metallurgical grade chromite (<1 mm), anthracite breeze (<1 mm), and fine FeCr (<1 mm) that were used to prepare pellets in the laboratory, as well as industrially produced pre-reduced pellets that had already been milled in preparation for the determination of the pre-reduction level with wet chemical analysis were received from a large South African FeCr producer. These laboratory prepared pellets and the industrially produced pellet mixtures were considered in this investigation. Samples were moulded in resin and polished in order to obtain SEM micrographs of the polished cross sections. Elements with higher molecular weights are indicated by lighter greyscale, while elements with lower molecular weights are indicated by darker greyscale in SEM micrographs. This basic principle was applied in the development of the new analytical technique to determine the level of chromite pre-reduction, with the hypothesis that the pixel count of white pixels (representing metallised particles), divided by the combined pixel count of white (representing metallised particles) and grey (representing chromite particles) pixels would be directly related to the level of chromite pre-reduction determined with the current wet chemical method. This hypothesis can be mathematically expressed as: The newly-developed analytical method was validated by correlating the white pixel% calculated with the chromite pre-reduction levels (%) determined with wet chemical analysis of laboratory prepared and industrially produced pellet mixtures, which had R2 values of 0.998 and 0.919, respectively. This suggests that the method can be used to determine chromite pre-reduction accurately. / MSc (Engineering Sciences in Chemical Engineering), North-West University, Potchefstroom Campus, 2015
2

SEM image processing as an alternative method to determine chromite pre-reduction / Given Terrance Mpho Mohale

Mohale, Given Terrance Mpho January 2015 (has links)
Ferrochrome (FeCr) is a crude alloy containing chromium (Cr) and iron (Fe). FeCr is mainly used for the production of stainless steel, which is an important modern-day alloy. FeCr is produced from chromite ore through various smelting methods. In this study, the focus was on the pelletised chromite pre-reduction process, which is also referred to as the solid state reduction of chromite. In this process, fine chromite ore, a clay binder and a carbon reductant are dry milled, agglomerated (pelletised) and pre-reduced (solid state reduction) in a rotary kiln. The pre-reduced pellets are then charged hot, immediately after exiting the rotary kiln, into a closed submerged arc furnace (SAF). This production process option has the lowest specific energy consumption (SEC), i.e. MWh/ton FeCr produced, of all the FeCr production processes that are commercially applied. Other advantages associated with the application of the pelletised chromite pre-reduction process are that it eliminates the use of chromite fines, has a high Cr recovery, and produces low sulphur- (S) and silicon (Si)-containing FeCr. The main disadvantage of the pelletised chromite pre-reduction process is that it requires extensive metallurgical control due to the variances in the levels of pre-reduction achieved and carbon content of the pre-reduced pelletised furnace feed material. This implies that the metallurgical carbon balance has to be changed regularly to prevent the process from becoming carbon deficient (also referred to as ‘under coke’) or over carbon (also referred to as ‘over coke’). The analytical technique currently applied to determine the level of chromite pre-reduction is time consuming, making it difficult and expensive to deal with large numbers of samples. In an attempt to develop a technique that would be faster to determine the level of chromite pre-reduction, a new analytical method using a combination of scanning electron microscopy (SEM), image processing and computational techniques was investigated in this study. Metallurgical grade chromite (<1 mm), anthracite breeze (<1 mm), and fine FeCr (<1 mm) that were used to prepare pellets in the laboratory, as well as industrially produced pre-reduced pellets that had already been milled in preparation for the determination of the pre-reduction level with wet chemical analysis were received from a large South African FeCr producer. These laboratory prepared pellets and the industrially produced pellet mixtures were considered in this investigation. Samples were moulded in resin and polished in order to obtain SEM micrographs of the polished cross sections. Elements with higher molecular weights are indicated by lighter greyscale, while elements with lower molecular weights are indicated by darker greyscale in SEM micrographs. This basic principle was applied in the development of the new analytical technique to determine the level of chromite pre-reduction, with the hypothesis that the pixel count of white pixels (representing metallised particles), divided by the combined pixel count of white (representing metallised particles) and grey (representing chromite particles) pixels would be directly related to the level of chromite pre-reduction determined with the current wet chemical method. This hypothesis can be mathematically expressed as: The newly-developed analytical method was validated by correlating the white pixel% calculated with the chromite pre-reduction levels (%) determined with wet chemical analysis of laboratory prepared and industrially produced pellet mixtures, which had R2 values of 0.998 and 0.919, respectively. This suggests that the method can be used to determine chromite pre-reduction accurately. / MSc (Engineering Sciences in Chemical Engineering), North-West University, Potchefstroom Campus, 2015
3

Estudo da redução de pelotas auto-redutoras de cromita. / Study of reduction in self-reducing pellet of chromites.

Pillihuaman Zambrano, Adolfo 03 May 2006 (has links)
Neste trabalho estuda-se o comportamento de redução para a obtenção da liga FeCrAC a partir da pelota auto-redutora feita de minério de cromita, coque de petróleo, ferro-silicio, cal hidratada, sílica e cimento portland ARI. As principais variáveis consideradas são: teor de redutor na composição da pelota, quantidade do redutor, temperatura e tempo. Inicialmente os materiais (cromita, ferro-silício, coque de petróleo, cal hidratada, sílica e cimento Portland ARI), foram caracterizados por: análise química e análise granulométrica. Após a caracterização os materiais (cromita, ferro-silício, coque de petróleo e cimento Portland ARI) foram aglomerados na forma de pelotas juntamente com cal hidratada e sílica para ajuste da basicidade quaternária da escória. A redução das pelotas foi feita num forno de indução que pode atingir temperaturas de até 1973K (1700oC). Todos os experimentos de redução foram realizados no aparato experimental utilizando-se cadinhos de grafite nas temperaturas de 1773K (1500oC), 1823K (1550oC) e 1873K (1600oC). Após os ensaios de redução os produtos obtidos (escória e metal) foram analisados por microscopia ótica, por microscopia eletrônica de varredura (MEV) e análise por EDS. O efeito do aumento da temperatura na redução da cromita é significativo. Houve aumento na velocidade de redução de 4 a 6 vezes com o aumento de 1773K (1500oC) para 1873K (1600oC). Os resultados indicam um efeito marcante de pequenas adições de Fe-Si na velocidade de redução da cromita. Na temperatura de 1773K (1500oC) as adições até ~2% de Fe-Si são benéficas e para adições maiores praticamente não há vantagens técnicas e econômicas. Os tempos necessários para atingir a fração unitária de redução foram 12, 7,5 e 5 minutos para adições de Fe-Si de 0, ~1%, e ~2%, respectivamente; a temperatura de 1823K (1550oC). À temperatura de 1873K (1600oC) as adições de Fe-Si na pelota apresentam também efeitos significativos na velocidade de redução, porém adições de ~1%, e ~2% mostraram os mesmos resultados, indicando que o teor ótimo de adição de Fe- Si na pelota deve estar em torno de 1%. Verificou-se que a utilização de pelotas auto-redutoras contendo 26% em excesso, sobre o estequiométrico, de coque de petróleo aumentou o rendimento de recuperação de Cr de 96% para 98%. O rendimento e a eficiência do processo de auto-redução supera aos processos convencionais de produção de FeCrAC, obtendo-se altas recuperações de cromo na faixa de 96% até 98% para Cr. / The reduction behaviors, at high temperature, of the self-reducing pellets of chromites for production of high carbon ferro-chromium are studied in this work. The influences of the temperature, of the excess of reductant and the small addition of the Fe-Si were analyzed. The materials used (chromites, petroleum coke, Portland cement, hydrated lime and silica) were characterized chemically and by size distribution. The composite pellets (self-reducing) were produced aiming a quaternary basicity of 0.91. The reductant was calculated considering a stoichiometry of reduction and dissolution of 4wt%C in the final metallic phase. The reduction experiments were made in a special system, in argon atmosphere, heated by induction and at temperatures of 1773, 1823 and 1873K. The dried pellets were placed into a pre-heated graphite crucible and left there along up to no gas evolution was observed. The results of the reacted fraction with time were plotted and the obtained product (metallic and slag phases) after experiments were analyzed by optical and by electron micrograph. The chemical estimations were made by micro-analysis (EDS) The effect of increasing the temperature of reduction was sensitive, such that, the reduction rate increased 4 to 6 times with increase of temperature from 1773 to 1873. The small additions, up to 2% of Fe-Si, for substituting the equivalent fixed carbon of the petroleum coke showed to improve substantially the reduction rate, almost doubling it in comparison with pellets without any addition. The use of excess of 26%, over the stoichiometry, of the petroleum coke decreased around 50% of the chromium content in the slag, with relation to pellet without excess. The chromium recovery yield reached 98%. This result coupled with very high reduction rate of self-reducing pellets show the potential for self-reducing processes for ferro-chromium production.
4

Unique challenges of clay binders in a pelletised chromite pre–reduction process : a case study / Kleynhans E.L.J.

Kleynhans, Ernst Lodewyk Johannes January 2011 (has links)
As a result of increasing cost, efficiency and environmental pressures ferrochrome producers strive towards lower overall energy consumption. Increases in local electricity prices have placed particular pressure on South African ferrochrome producers. Pelletised chromite pre–reduction is likely the currently applied ferrochrome production process option with the lowest specific electricity consumption. In this process fine chromite, together with a carbonaceous reductant and a clay binder is milled, pelletised and pre–reduced. In this dissertation it is demonstrated that the functioning of the clay binder in this process is not as straightforward as in conventional metallurgical pelletisation processes, since the cured pre–reduced pellets are characterised by an oxidised outer layer and a pre–reduced core. Conventional performance characteristics of clay binders (e.g. compressive strength and abrasion resistance) therefore have to be evaluated in both oxidative sintering and reducing environments. Two clay samples, i.e. attapulgite and bentonite, were obtained from a local ferrochrome producer and investigated within the context of this study. Results indicated that the compressive and abrasion resistance strengths of oxidative sintered pellets for both clays were substantially better than that of pre–reduced pellets. Thus, although the objective of the chromite pre–reduced process is to achieve maximum pre–reduction, the strength of pre–reduced chromite pellets is significantly enhanced by the thin oxidised outer layer. The strength of the bentonite–containing pellets was found to be superior in both pre–reducing and oxidative sintering environments. This is significant, since the attapulgite clay is currently the preferred option at both South African ferrochrome smelting plants applying the pelletised chromite pre–reduction process. Although not quantitatively investigated, thermo–mechanical analysis indicated that the hot strength of the attapulgite pellets could be weaker than the bentonite–containing pellets. The possible effects of clay binder selection on the level of pre–reduction were also investigated, since it could have substantial efficiency and economic implications. For both case study clays investigated, higher clay contents resulted in lower pre–reduction levels. This has relevance within the industrial process, since higher clay contents are on occasion utilised to achieve improved green strength. The average pre–reduction of the bentonite–containing pellets were also consistently higher than that of the attapulgite–containing pellets. Again, this is significant, since the attapulgite clay is currently the preferred option. In general the case study results presented in this dissertation indicated that it is unlikely that the performance of a specific clay binder in this relatively complex process can be predicted; based only on the chemical, surface chemical and mineralogical characterisation of the clay. / Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.
5

Unique challenges of clay binders in a pelletised chromite pre–reduction process : a case study / Kleynhans E.L.J.

Kleynhans, Ernst Lodewyk Johannes January 2011 (has links)
As a result of increasing cost, efficiency and environmental pressures ferrochrome producers strive towards lower overall energy consumption. Increases in local electricity prices have placed particular pressure on South African ferrochrome producers. Pelletised chromite pre–reduction is likely the currently applied ferrochrome production process option with the lowest specific electricity consumption. In this process fine chromite, together with a carbonaceous reductant and a clay binder is milled, pelletised and pre–reduced. In this dissertation it is demonstrated that the functioning of the clay binder in this process is not as straightforward as in conventional metallurgical pelletisation processes, since the cured pre–reduced pellets are characterised by an oxidised outer layer and a pre–reduced core. Conventional performance characteristics of clay binders (e.g. compressive strength and abrasion resistance) therefore have to be evaluated in both oxidative sintering and reducing environments. Two clay samples, i.e. attapulgite and bentonite, were obtained from a local ferrochrome producer and investigated within the context of this study. Results indicated that the compressive and abrasion resistance strengths of oxidative sintered pellets for both clays were substantially better than that of pre–reduced pellets. Thus, although the objective of the chromite pre–reduced process is to achieve maximum pre–reduction, the strength of pre–reduced chromite pellets is significantly enhanced by the thin oxidised outer layer. The strength of the bentonite–containing pellets was found to be superior in both pre–reducing and oxidative sintering environments. This is significant, since the attapulgite clay is currently the preferred option at both South African ferrochrome smelting plants applying the pelletised chromite pre–reduction process. Although not quantitatively investigated, thermo–mechanical analysis indicated that the hot strength of the attapulgite pellets could be weaker than the bentonite–containing pellets. The possible effects of clay binder selection on the level of pre–reduction were also investigated, since it could have substantial efficiency and economic implications. For both case study clays investigated, higher clay contents resulted in lower pre–reduction levels. This has relevance within the industrial process, since higher clay contents are on occasion utilised to achieve improved green strength. The average pre–reduction of the bentonite–containing pellets were also consistently higher than that of the attapulgite–containing pellets. Again, this is significant, since the attapulgite clay is currently the preferred option. In general the case study results presented in this dissertation indicated that it is unlikely that the performance of a specific clay binder in this relatively complex process can be predicted; based only on the chemical, surface chemical and mineralogical characterisation of the clay. / Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.
6

Estudo da redução de pelotas auto-redutoras de cromita. / Study of reduction in self-reducing pellet of chromites.

Adolfo Pillihuaman Zambrano 03 May 2006 (has links)
Neste trabalho estuda-se o comportamento de redução para a obtenção da liga FeCrAC a partir da pelota auto-redutora feita de minério de cromita, coque de petróleo, ferro-silicio, cal hidratada, sílica e cimento portland ARI. As principais variáveis consideradas são: teor de redutor na composição da pelota, quantidade do redutor, temperatura e tempo. Inicialmente os materiais (cromita, ferro-silício, coque de petróleo, cal hidratada, sílica e cimento Portland ARI), foram caracterizados por: análise química e análise granulométrica. Após a caracterização os materiais (cromita, ferro-silício, coque de petróleo e cimento Portland ARI) foram aglomerados na forma de pelotas juntamente com cal hidratada e sílica para ajuste da basicidade quaternária da escória. A redução das pelotas foi feita num forno de indução que pode atingir temperaturas de até 1973K (1700oC). Todos os experimentos de redução foram realizados no aparato experimental utilizando-se cadinhos de grafite nas temperaturas de 1773K (1500oC), 1823K (1550oC) e 1873K (1600oC). Após os ensaios de redução os produtos obtidos (escória e metal) foram analisados por microscopia ótica, por microscopia eletrônica de varredura (MEV) e análise por EDS. O efeito do aumento da temperatura na redução da cromita é significativo. Houve aumento na velocidade de redução de 4 a 6 vezes com o aumento de 1773K (1500oC) para 1873K (1600oC). Os resultados indicam um efeito marcante de pequenas adições de Fe-Si na velocidade de redução da cromita. Na temperatura de 1773K (1500oC) as adições até ~2% de Fe-Si são benéficas e para adições maiores praticamente não há vantagens técnicas e econômicas. Os tempos necessários para atingir a fração unitária de redução foram 12, 7,5 e 5 minutos para adições de Fe-Si de 0, ~1%, e ~2%, respectivamente; a temperatura de 1823K (1550oC). À temperatura de 1873K (1600oC) as adições de Fe-Si na pelota apresentam também efeitos significativos na velocidade de redução, porém adições de ~1%, e ~2% mostraram os mesmos resultados, indicando que o teor ótimo de adição de Fe- Si na pelota deve estar em torno de 1%. Verificou-se que a utilização de pelotas auto-redutoras contendo 26% em excesso, sobre o estequiométrico, de coque de petróleo aumentou o rendimento de recuperação de Cr de 96% para 98%. O rendimento e a eficiência do processo de auto-redução supera aos processos convencionais de produção de FeCrAC, obtendo-se altas recuperações de cromo na faixa de 96% até 98% para Cr. / The reduction behaviors, at high temperature, of the self-reducing pellets of chromites for production of high carbon ferro-chromium are studied in this work. The influences of the temperature, of the excess of reductant and the small addition of the Fe-Si were analyzed. The materials used (chromites, petroleum coke, Portland cement, hydrated lime and silica) were characterized chemically and by size distribution. The composite pellets (self-reducing) were produced aiming a quaternary basicity of 0.91. The reductant was calculated considering a stoichiometry of reduction and dissolution of 4wt%C in the final metallic phase. The reduction experiments were made in a special system, in argon atmosphere, heated by induction and at temperatures of 1773, 1823 and 1873K. The dried pellets were placed into a pre-heated graphite crucible and left there along up to no gas evolution was observed. The results of the reacted fraction with time were plotted and the obtained product (metallic and slag phases) after experiments were analyzed by optical and by electron micrograph. The chemical estimations were made by micro-analysis (EDS) The effect of increasing the temperature of reduction was sensitive, such that, the reduction rate increased 4 to 6 times with increase of temperature from 1773 to 1873. The small additions, up to 2% of Fe-Si, for substituting the equivalent fixed carbon of the petroleum coke showed to improve substantially the reduction rate, almost doubling it in comparison with pellets without any addition. The use of excess of 26%, over the stoichiometry, of the petroleum coke decreased around 50% of the chromium content in the slag, with relation to pellet without excess. The chromium recovery yield reached 98%. This result coupled with very high reduction rate of self-reducing pellets show the potential for self-reducing processes for ferro-chromium production.

Page generated in 0.0635 seconds