• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Structural Geology, Kinematics and Timing of Deformation at the Superior craton margin, Gull Rapids, Manitoba

Downey, Matthew January 2005 (has links)
The Gull Rapids area, Manitoba, lies on the Superior craton margin and forms part of the Superior Boundary Zone (SBZ), a major collisional zone between the Archean Superior craton and the adjacent Paleoproterozoic Trans-Hudson Orogen. There are two main rock assemblages at Gull Rapids: orthogneisses (of possible Split Lake Block origin) and supracrustal rocks (metavolcanic and metasedimentary). Late, crosscutting felsic and mafic intrusive bodies (mostly dykes and sills) are used to constrain the relative and absolute timing of deformation and metamorphism. <br /><br /> The Gull Rapids area records a complex tectonic history. The area experienced four generations of Neoarchean ductile and brittle deformation (G1 ? G4) and one of Paleoproterozoic ductile-brittle deformation (G5). G1 deformation produced the main foliation in the map area, as well as local isoclinal folding which may be related to an early shearing event. M1a prograde mid-amphibolite facies metamorphism is contemporaneous with the early stages of G1. Widespread, tight to isoclinal sheath folding during G2 was recorded in the supracrustal assemblage, and is the result of southwest-side-up, dextral shearing during the early shearing event. A ca. 2. 68 Ga widespread phase of granitoid intrusion was emplaced late-G1 to early-G2, and is rich in metamorphic minerals that record conditions of M1b upper-amphibolite facies peak metamorphism. M1b metamorphism, late-G1 to early-G2 deformation, and intrusion of this felsic phase are contemporaneous. M2 retrograde metamorphism to mid-amphibolite facies was recorded sometime after M1b. G1 and G2 structures were re-folded during G3, which was then followed by G4 southwest-side-up, dextral and sinistral shearing, contemporaneous with late pegmatite intrusion at ca. 2. 61 Ga. This was followed by mafic dyke emplacement at ca. 2. 10 Ga, and then by G5 sinistral and dextral shearing and M3 greenschist facies metamorphism or hydrothermal alteration at ca. 1. 80 Ga. <br /><br /> Deformation and metamorphism at Gull Rapids post-dates emplacement and deposition of gneissic and supracrustal rocks, respectively. This deformation and metamorphism, except for G5 and M3, is Neoarchean (ca. 2. 68?2. 61 Ga), and represents a significant movement of crustal blocks: km-scale shearing of the supracrustal assemblage and consequent uplift of the Split Lake Block. Late deformation and metamorphism (G5, M3) may be related to the Paleoproterozoic Trans-Hudson orogeny. The Neoarchean and Paleoproterozoic zircon populations in the geochronological data suggest that the Gull Rapids area largely experienced Neoarchean deformation and metamorphism with a weak Paleoproterozoic overprint. All of the evidence presented above suggests that the Gull Rapids area lies in a part of the Superior Boundary Zone, yet does not lie at the exact margin of the Superior craton, and therefore does not mark the Archean-Proterozoic boundary proper in northeastern Manitoba.
2

The Structural Geology, Kinematics and Timing of Deformation at the Superior craton margin, Gull Rapids, Manitoba

Downey, Matthew January 2005 (has links)
The Gull Rapids area, Manitoba, lies on the Superior craton margin and forms part of the Superior Boundary Zone (SBZ), a major collisional zone between the Archean Superior craton and the adjacent Paleoproterozoic Trans-Hudson Orogen. There are two main rock assemblages at Gull Rapids: orthogneisses (of possible Split Lake Block origin) and supracrustal rocks (metavolcanic and metasedimentary). Late, crosscutting felsic and mafic intrusive bodies (mostly dykes and sills) are used to constrain the relative and absolute timing of deformation and metamorphism. <br /><br /> The Gull Rapids area records a complex tectonic history. The area experienced four generations of Neoarchean ductile and brittle deformation (G1 ? G4) and one of Paleoproterozoic ductile-brittle deformation (G5). G1 deformation produced the main foliation in the map area, as well as local isoclinal folding which may be related to an early shearing event. M1a prograde mid-amphibolite facies metamorphism is contemporaneous with the early stages of G1. Widespread, tight to isoclinal sheath folding during G2 was recorded in the supracrustal assemblage, and is the result of southwest-side-up, dextral shearing during the early shearing event. A ca. 2. 68 Ga widespread phase of granitoid intrusion was emplaced late-G1 to early-G2, and is rich in metamorphic minerals that record conditions of M1b upper-amphibolite facies peak metamorphism. M1b metamorphism, late-G1 to early-G2 deformation, and intrusion of this felsic phase are contemporaneous. M2 retrograde metamorphism to mid-amphibolite facies was recorded sometime after M1b. G1 and G2 structures were re-folded during G3, which was then followed by G4 southwest-side-up, dextral and sinistral shearing, contemporaneous with late pegmatite intrusion at ca. 2. 61 Ga. This was followed by mafic dyke emplacement at ca. 2. 10 Ga, and then by G5 sinistral and dextral shearing and M3 greenschist facies metamorphism or hydrothermal alteration at ca. 1. 80 Ga. <br /><br /> Deformation and metamorphism at Gull Rapids post-dates emplacement and deposition of gneissic and supracrustal rocks, respectively. This deformation and metamorphism, except for G5 and M3, is Neoarchean (ca. 2. 68?2. 61 Ga), and represents a significant movement of crustal blocks: km-scale shearing of the supracrustal assemblage and consequent uplift of the Split Lake Block. Late deformation and metamorphism (G5, M3) may be related to the Paleoproterozoic Trans-Hudson orogeny. The Neoarchean and Paleoproterozoic zircon populations in the geochronological data suggest that the Gull Rapids area largely experienced Neoarchean deformation and metamorphism with a weak Paleoproterozoic overprint. All of the evidence presented above suggests that the Gull Rapids area lies in a part of the Superior Boundary Zone, yet does not lie at the exact margin of the Superior craton, and therefore does not mark the Archean-Proterozoic boundary proper in northeastern Manitoba.
3

The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western Australia

Muller, Stefan G. January 2006 (has links)
[Truncated abstract] Banded iron formations of the ~27702405 Ma Hamersley Province of Western Australia were locally upgraded to high-grade hematite ore during the Early Palaeoproterozoic by a combination of hypogene and supergene processes after the initial rise of atmospheric oxygen. Ore genesis was associated with the stratigraphic break between Lower and Upper Wyloo Groups of the Ashburton Province, and has been variously linked to the Ophthalmian orogeny, late-orogenic extensional collapse, and anorogenic continental extension. Small spot PbPb dating of in situ baddeleyite by SHRIMP (sensitive highresolution ion-microprobe) has resolved the ages of two key suites of mafic intrusions constraining for the first time the tectonic evolution of the Ashburton Province and the age and setting of iron-ore formation. Mafic sills dated at 2208 ± 10 Ma were folded during the Ophthalmian orogeny and then cut by the unconformity at the base of the Lower Wyloo Group. A mafic dyke swarm that intrudes the Lower Wyloo Group and has close genetic relationship to iron ore is 2008 ± 16 Ma, slightly younger than a new syneruptive 2031 ± 6 Ma zircon age for the Lower Wyloo Group. These new ages constrain the Ophthalmian orogeny to the period <2210 to >2030 Ma, before Lower Wyloo Group extension, sedimentation, and flood-basalt volcanism. The ~2010 Ma dykes present a new maximum age for iron-ore genesis and deposition of the Upper Wyloo Group, thereby linking ore genesis to a ~21002000 Ma period of continental extension similarly recorded by Palaeoproterozoic terrains worldwide well after the initial oxidation of the atmosphere at ~2320 Ma. The Lower Wyloo Group contains, in ascending order, the fluvial to shallow-marine Beasley River Quartzite, the predominantly subaqueously emplaced Cheela Springs flood basalt and the Wooly Dolomite, a shelf-ramp carbonate succession. Field observations point to high subsidence of the sequence, rather than the mainly subaerial to shallow marine depositional environment-interpretation described by earlier workers. Abundant hydro-volcanic breccias, including hyaloclastite, peperite and fluidal-clast breccia all indicate quench-fragmentation processes caused by interaction of lava with water, and support the mainly subaqueous emplacement of the flood basalt which is also indicated by interlayered BIF-like chert/mudstones and below-wave-base turbiditic mass-flows.

Page generated in 0.0734 seconds