Spelling suggestions: "subject:"precessing jet"" "subject:"recessing jet""
1 |
The flow within and in the near external field of a fluidic precessing jet nozzle.Wong, Chong Yau January 2004 (has links)
Title page, abstract and table of contents only. The complete thesis in print form is available from the University of Adelaide Library. / This thesis examines the internal and near external flow fields of a nozzle which produces a naturally precessing fluidic jet (FPJ). The internal flow is investigated by phas-eaveraged Laser-Doppler anemometry (LDA) using a total pressure probe as a phase sensor, while the external flow is investigated primarily by phase-averaged Particle Image Velocimetry (PIV) using a pair of hot-wire probes as the phase sensor, and LDA. The internal flow results partially confirm the flow structure proposed by earlier investigators and demonstrate the effect of the reversed axial flow on the internal jet within the FPI chamber. The results also support the presence of a driving vortex proposed in the literature. A plethora of experimental techniques progressively reveal the characteristics and features of the external precessing jet. The characteristics of the jet at the exit plane are found to be sensitive to inlet conditions and to inlet Reynolds number. The structure of the flow emerging from the FPJ exit is revealed, and found to contain several significant vortical features. Based on the evidence gathered from all the experiments, a new flow structure of the external precessing jet is proposed. Finally, the new experimental data are used to define Strouhal and Reynolds numbers based on the actual characteristics of the emerging jet. These allow the FPJ flow to be compared with other flows such as mechanical precessing jets. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1109306 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2004
|
2 |
Mass loading and Stokes number effects in steady and unsteady particle-laden jets.Foreman, Richard J. January 2008 (has links)
In single phase, steady, turbulent axisymmetric jets, the time-averaged velocity field can be characterised by the decay in centreline velocity and increased spread with increasing distance from the jet orifice. In a two-phase or ‘particle-laden’ jet, the particles will modulate the jet turbulence and exchange momentum with the gas phase. Consequently, these effects reduce both the centreline velocity decay and spreading rates with respect to the single-phase jet. Empirical exponential scaling factors were found by previous authors to describe the reduced centreline decay and spreading rates well for low Stokes numbers. In this thesis, power-law scaling factors are found to scale well a wide range of centreline velocity decay and spreading rate data published over the past 40 years, for a wide range of Stokes numbers. The power-law scaling is composed of three different regimes. For low Stokes numbers St₀ ≲20, it is found that the gas phase centreline velocity, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹, and the velocity profile half widths r₁/ ₂ collapse if plotted as a function of x/D(1+Ø₀)⁻¹. Here, u₀ is the exit velocity, Ø₀ is the exit mass loading, x is the axial coordinate and D is the pipe diameter. For intermediate Stokes numbers, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹ and r₁/ ₂ collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/². For high Stokes numbers St₀ ≳ 200, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/² and the half width is approximately independent of Ø₀. In addition to the velocity of the gas phase, other aspects of particle- laden jets are found to be amenable to scaling by power-law functions. It is found that reported solid phase mass flux data scales similarly to gas phase measurements. Limited solid phase concentration and entrainment measurements reported in the literature are also found to scale by power-law functions. Whereas that limited data was obtained from the literature, measurements of the distribution of particles in particle-laden jets were conducted to further assess the validity of the scaling regimes to the solid phase. A planar light scattering technique is conducted to measure the distribution of particles in an axisymmetric jet and their subsequent scaling (or lack thereof) are reported for a variation in Ø₀, Stokes number and gas phase jet exit density. For Stokes numbers based on the pipe friction velocity St* ₀ ∼ 1, half widths of particle distributions were found to scale with x/D(1+Ø₀)⁻¹/² . The apparent centreline concentration was found to be independent of Ø₀ at this same St* ₀ . For Stokes numbers based on the pipe friction velocity St*₀ < 1, half widths are independent of Ø₀. The effect of the other parameters, i.e. Stokes number and density ratio, on centreline distributions and half widths are also investigated. Measurements of particle distributions, delivered via an annular channel, in a triangular oscillating jet (OJ) flow are also reported for a variation in momentum ratio, the ratio of OJ momentum to channel momentum and mass loading. The results of the variation in momentum ratio on particle distributions are compared with an existing precessing jet (PJ) study. It is the aim of this study to determine the experimental conditions for which the OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable at an industrial scale by virtue of its lower driving pressure compared with a PJ nozzle. It is found that particle distributions in a PJ flow spread at a greater rate with increasing momentum ratio compared with the spread of particles in an OJ flow. However, at momentum ratios approximately less than unity, the absolute spread from an OJ is greater. This also corresponds to nozzle driving pressure less than approximately 10kPA. For an increase in mass loading, the spread of particle distribution in the OJ decreases and recirculation increases. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337352 / Thesis (M.Eng.Sc.) -- University of Adelaide, School of Mechanical Engineering, 2008
|
3 |
Mass loading and Stokes number effects in steady and unsteady particle-laden jets.Foreman, Richard J. January 2008 (has links)
In single phase, steady, turbulent axisymmetric jets, the time-averaged velocity field can be characterised by the decay in centreline velocity and increased spread with increasing distance from the jet orifice. In a two-phase or ‘particle-laden’ jet, the particles will modulate the jet turbulence and exchange momentum with the gas phase. Consequently, these effects reduce both the centreline velocity decay and spreading rates with respect to the single-phase jet. Empirical exponential scaling factors were found by previous authors to describe the reduced centreline decay and spreading rates well for low Stokes numbers. In this thesis, power-law scaling factors are found to scale well a wide range of centreline velocity decay and spreading rate data published over the past 40 years, for a wide range of Stokes numbers. The power-law scaling is composed of three different regimes. For low Stokes numbers St₀ ≲20, it is found that the gas phase centreline velocity, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹, and the velocity profile half widths r₁/ ₂ collapse if plotted as a function of x/D(1+Ø₀)⁻¹. Here, u₀ is the exit velocity, Ø₀ is the exit mass loading, x is the axial coordinate and D is the pipe diameter. For intermediate Stokes numbers, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹ and r₁/ ₂ collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/². For high Stokes numbers St₀ ≳ 200, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/² and the half width is approximately independent of Ø₀. In addition to the velocity of the gas phase, other aspects of particle- laden jets are found to be amenable to scaling by power-law functions. It is found that reported solid phase mass flux data scales similarly to gas phase measurements. Limited solid phase concentration and entrainment measurements reported in the literature are also found to scale by power-law functions. Whereas that limited data was obtained from the literature, measurements of the distribution of particles in particle-laden jets were conducted to further assess the validity of the scaling regimes to the solid phase. A planar light scattering technique is conducted to measure the distribution of particles in an axisymmetric jet and their subsequent scaling (or lack thereof) are reported for a variation in Ø₀, Stokes number and gas phase jet exit density. For Stokes numbers based on the pipe friction velocity St* ₀ ∼ 1, half widths of particle distributions were found to scale with x/D(1+Ø₀)⁻¹/² . The apparent centreline concentration was found to be independent of Ø₀ at this same St* ₀ . For Stokes numbers based on the pipe friction velocity St*₀ < 1, half widths are independent of Ø₀. The effect of the other parameters, i.e. Stokes number and density ratio, on centreline distributions and half widths are also investigated. Measurements of particle distributions, delivered via an annular channel, in a triangular oscillating jet (OJ) flow are also reported for a variation in momentum ratio, the ratio of OJ momentum to channel momentum and mass loading. The results of the variation in momentum ratio on particle distributions are compared with an existing precessing jet (PJ) study. It is the aim of this study to determine the experimental conditions for which the OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable at an industrial scale by virtue of its lower driving pressure compared with a PJ nozzle. It is found that particle distributions in a PJ flow spread at a greater rate with increasing momentum ratio compared with the spread of particles in an OJ flow. However, at momentum ratios approximately less than unity, the absolute spread from an OJ is greater. This also corresponds to nozzle driving pressure less than approximately 10kPA. For an increase in mass loading, the spread of particle distribution in the OJ decreases and recirculation increases. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337352 / Thesis (M.Eng.Sc.) -- University of Adelaide, School of Mechanical Engineering, 2008
|
4 |
Active flow control of a precessing jetBabazadeh, Hamed Unknown Date
No description available.
|
5 |
Active flow control of a precessing jetBabazadeh, Hamed 06 1900 (has links)
Active flow control of a precessing jet is the focus of this work. A round jet confined by a round cavity exhibits a self-excited rotational motion, precession, for a specific range of cavity lengths. Active flow control of this unstable flow provides the ability to control near-field mixing of the precessing jet. Twelve micro-jets on the periphery of the nozzle inlet are used as actuation and near-field pressure data is measured by four pressure probes at the chamber exit to monitor the flow behavior. A phase plane, based on pressure signals, is used to find a Reynolds number and actuation frequency range where actuation stabilizes the flow motion. Phase-locked stereoscopic PIV is also used to validate the pressure processing tool. The results confirm the pressure measurement and micro-jet actuation can be employed to develop a future closed-loop flow control on a precessing jet.
|
6 |
The experimental investigation of the effect of chamber length on jet precessionMadej, Adam Martin 11 1900 (has links)
The effect of chamber length and Reynolds number on the stability and behavior of the flow field generated by a precessing jet nozzle was studied using stereoscopic particle image velocimetry (StereoPIV). An algorithm was developed to determine the mode of the flow based on the distribution of axial velocity. The optimal chamber length for precession to occur was found to be between 2 and 2.75 chamber-diameters. There is no precession at a chamber length of one diameter, and the occurrence of precession was found to be strongly related to Reynolds number. Conditionally averaged velocity distributions for the flow in precessing mode were calculated.
The effect of initial condition on downstream behavior of axisymmetric jets was examined. Variations in spread and decay rates were found for jets issuing from different nozzles. Self-similar solutions for axisymmetric jets are therefore not universal, and are instead dependent upon initial conditions at the source.
|
7 |
The experimental investigation of the effect of chamber length on jet precessionMadej, Adam Martin Unknown Date
No description available.
|
Page generated in 0.0862 seconds