• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Homogeneous Precipitation of Nickel Hydroxide Powders

Bora Mavis January 2003 (has links)
Thesis (Ph.D.); Submitted to Iowa State Univ., Ames, IA (US); 12 Dec 2003. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2111" Bora Mavis. 12/12/2003. Report is also available in paper and microfiche from NTIS.
2

Investigation of Microstructure and Mechanical Properties in Hot-work Tool Steels

Rey, Tomas January 2017 (has links)
Hot-work tool steels make up an important group of steels that are able to perform with good strength and toughness properties at elevated temperatures and stresses. They are able to gain this behavior through their alloy composition and heat treatment, which relies on the precipitation of alloy carbides to counter the loss in strength as the tempered material becomes more ductile. As demand grows for materials that are suitable for even harsher applications and that show improved mechanical qualities, the steel industry must continuously investigate the development of new steel grades. Within this context, the present work focuses on examining the mechanical properties and microstructure of two hot-work tool steels, of which one is a representative steel grade (Steel A) and the second a higher-alloyed variant (Steel B), at different tempering conditions. To complement the experimental work, precipitation simulations are used to monitor the progression of secondary carbide precipitation and to examine the predicted microstructural changes through varying the alloy composition. The study finds that Steel B does not actually have improved properties with respect to Steel A and suggests that the precipitation behavior of both steels is virtually identical. Despite this, the simulation work reveals that this behavior can change dramatically to favor more positive hardness contributions by increasing the alloy content of V. In short, with the project being part of an ongoing investigation, there remain several areas of analysis that need to be completed before offering a complete picture that can ultimately play a part in the development of a new hot-work tool steel grade.
3

Impact Of Dynamical Core And Diurnal Atmosphere Occean Coupling On Simulation Of Tropical Rainfall In CAM 3.1, AGCM

Kumar, Suvarchal 04 1900 (has links)
In first part of the study we discuss impact of dynamical core in simulation of tropical rainfall. Over years many new dynamical cores have been developed for atmospheric models to increase efficiency and reduce numerical errors. CAM3.1 gives an opportunity to study the impact of the dynamical core on simulations with its three dynamical cores namely Eulerian spectral(EUL) , Semilagrangian dynamics(SLD) and Finite volume(FV) coupled to a single parametrization package. A past study has compared dynamical cores of CAM3 in terms on tracer transport and has showed advantages using FV in terms of tracer transport. In this study we compare the dynamical cores in climate simulations and at their optimal configuration, which is the intended use of the model. The model is forced with AMIP type SST and rainfall over seasonal, interannual scales is compared. The significant differences in simulation of seasonal mean exist over tropics and over monsoon regions with observations and among dynamical cores. The differences among EUL and SLD, which use spectral transform methods are lesser compared that of with FV clearly indicating role of numerics in differences. There exist major errors in simulation of seasonal cycle in all dynamical cores and errors in simulation of seasonal means over many regions are associated with errors in simulation of seasonal cycle such as over south china sea. Seasonal cycle in FV is weaker compared to SLD and EUL. The dynamical cores exhibit different interannual variability of rainfall over Indian monsoon region, the period of maximum power corresponding to a dynamical core differs substantially with another. From this study there seems no superiority associated with FV dynamical core over all climate scales as seen in tracer transport. The next part of the study deals with impact of diurnal ocean atmosphere coupling in an AGCM,CAM3.1. Due to relatively low magnitude of diurnal cycle of SST and lack of SST observations over diurnal scales current atmospheric models are forced with SSTs of periods grater than a day. CAM 3.1 standalone model is forced with monthly SSTs but the interpolation is linear to every time step between any two months and this linear interpolation implies a linear diurnal and intraseasonal variation of SST which is not true in nature. To test the sensitivity of CAM3.1 to coupling of SST on diurnal scales, we prescribed over tropics(20S20N) a diurnal cycle of SST over daily mean interpolated SST of different magnitudes and phase comparable to observations. This idea of using a diurnal cycle of SST retaining seasonal mean SST in an atmospheric model is novel and provides an interesting frame work to test sensitivity of model to interpolations used in coupling of boundary conditions. Our analysis shows a high impact of using diurnal cycle of SST on simulation of mean rainfall over tropics. The impact in a case where diurnal cycle of SST is fixed and retained to daily mean SST implies that changes associated with a coupled model are to some extent due to change in representation of diurnal cycle of SST. A decrease of excess rainfall over western coast of Bay of Bengal and an increase of rainfall over northern bay of Bengal in such case is similar to the improvement due to coupling atmospheric model to a slab ocean model. This also implies that problems with current AMIP models in simulation of seasonal mean Indian monsoon rainfall could be due to erroneous representation of diurnal cycle of SST in models over this region where the diurnal cycle of SST is high in observations. The high spatial variability of the impact in various cases over tropics implies that a similar spatial variation of diurnal cycle could be important for accurate simulation of rainfall over tropics. Preliminary analysis shows that impact on rainfall was due to changes in moisture convergence. We also hypothesized that diurnal cycle of SST could trigger convection over regions such as northern Bay of Bengal and rainfall convergence feedback sustains it. The impact was also found on simulation of internal interannual variability of rainfall
4

Stochastic Simulation Of Daily Rainfall Data Using Matched Block Bootstrap

Santhosh, D 06 1900 (has links)
Characterizing the uncertainty in rainfall using stochastic models has been a challenging area of research in the field of operational hydrology for about half a century. Simulated sequences drawn from such models find use in a variety of hydrological applications. Traditionally, parametric models are used for simulating rainfall. But the parametric models are not parsimonious and have uncertainties associated with identification of model form, normalizing transformation, and parameter estimation. None of the models in vogue have gained universal acceptability among practising engineers. This may either be due to lack of confidence in the existing models, or the inability to adopt models proposed in literature because of their complexity or both. In the present study, a new nonparametric Matched Block Bootstrap (MABB) model is proposed for stochastic simulation of rainfall at daily time scale. It is based on conditional matching of blocks formed from the historical rainfall data using a set of predictors (conditioning variables) proposed for matching the blocks. The efficiency of the developed model is demonstrated through application to rainfall data from India, Australia, and USA. The performance of MABB is compared with two non-parametric rainfall simulation models, k-NN and ROG-RAG, for a site in Melbourne, Australia. The results showed that MABB model is a feasible alternative to ROG-RAG and k-NN models for simulating daily rainfall sequences for hydrologic applications. Further it is found that MABB and ROG-RAG models outperform k-NN model. The proposed MABB model preserved the summary statistics of rainfall and fraction of wet days at daily, monthly, seasonal and annual scales. It could also provide reasonable performance in simulating spell statistics. The MABB is parsimonious and requires less computational effort than ROG-RAG model. It reproduces probability density function (marginal distribution) fairly well due to its data driven nature. Results obtained for sites in India and U.S.A. show that the model is robust and promising.

Page generated in 0.1496 seconds