• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling cancer predisposition: Profiling Li-Fraumeni syndrome patient-derived cell lines using bioinformatics and three-dimensional culture models

Phatak, Amruta Rajendra 07 October 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Although rare, classification of over 200 hereditary cancer susceptibility syndromes accounting for ~5-10% of cancer incidence has enabled the discovery and understanding of cancer predisposition genes that are also frequently mutated in sporadic cancers. The need to prevent or delay invasive cancer can partly be addressed by characterization of cells derived from healthy individuals predisposed to cancer due to inherited "single-hits" in genes in order to develop patient-derived samples as preclinical models for mechanistic in vitro studies. Here, we present microarray-based transcriptome profiling of Li-Fraumeni syndrome (LFS) patient-derived unaffected breast epithelial cells and their phenotypic characterization as in vitro three-dimensional (3D) models to test pharmacological agents. In this study, the epithelial cells derived from the unaffected breast tissue of a LFS patient were cultured and progressed from non-neoplastic to a malignant stage by successive immortalization and transformation steps followed by growth in athymic mice. These cell lines exhibited distinct transcriptomic profiles and were readily distinguishable based upon their gene expression patterns, growth characteristics in monolayer and in vitro 3D cultures. Transcriptional changes in the epithelial-to-mesenchymal transition gene signature contributed to the unique phenotypes observed in 3D culture for each cell line of the progression series; the fully transformed LFS cells exhibited invasive processes in 3D culture with disorganized morphologies due to cell-cell miscommunication, as seen in breast cancer. Bioinformatics analysis of the deregulated genes and pathways showed inherent differences between these cell lines and targets for pharmacological agents. After treatment with small molecule APR-246 that restores normal function to mutant p53, we observed that the neoplastic LFS cells had reduced malignant invasive structure formation from 73% to 9%, as well as an observance of an increase in formation of well-organized structures in 3D culture (from 27% to 91%) by stereomicroscopy and confocal microscopy. Therefore, the use of well-characterized and physiologically relevant preclinical models in conjunction with transcriptomic profiling of high-risk patient derived samples as a renewable laboratory resource can potentially guide the development of safer and more effective chemopreventive approaches.

Page generated in 0.1106 seconds