• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PREDATOR AND ABIOTIC EFFECTS ON HATCHING PHENOTYPE AND SURVIVAL OF ARBOREAL FROG EGGS WITH IMPLICATIONS FOR PHYTOPLANKTON

Hite, Jessica 01 May 2009 (has links)
Historically studies have focused on either the terrestrial or aquatic environments independently. However, these systems are inherently linked through numerous pathways including organisms with complex life cycles. Both abiotic factors and predators of these organisms can influence connections by changing the number of prey moving across habitat boundaries and by changing the phenotype of prey. When the focal organisms are primary consumers, these effects may have important implications for ecosystem processes. My study investigated how terrestrial predators and abiotic factors affect the number and phenotype of herbivorous tadpole inputs into a tropical forest pond. I found that predators and abiotic factors altered survival and timing of hatching and these effects varied temporally. Thus, temporal changes in the relative importance of these threats from abiotic sources and terrestrial predators on prey with complex life cycles may potentially have implications for connections with and food web dynamics in adjacent ecosystems.
2

Predator-Induced Changes of the Green Frog (<i>Rana clamitans</i>)'s Diet Preference

Guo, Mengyu 27 May 2016 (has links)
No description available.
3

Size-structured competition and predation in red-eyed treefrog tadpoles

Asquith, Christopher 25 March 2010 (has links)
Body size is important in determining the outcome of competition and predator-prey interactions. Size structure of a population (i.e. relative proportion of large and small conspecifics) may be particularly important in organisms with prolonged breeding periods and rapid growth where populations may have multiple cohorts at different stages of development competing for one resource. Both the consumptive and nonconsumptive effects of predators can also be size-dependent and can alter competitive interactions. Here we study the importance of size structure in the Neotropical leaf-breeding tree frog, Agalychnis callidryas. This species is a prolonged breeder such that multiple overlapping cohorts of differing sizes are common. Specifically, we examine size-specific intraspecific competition between A. callidryas tadpoles and then explore how predation affects these interactions. To determine the strength of inter-cohort competition, we manipulated the density and relative proportion of large and hatchling tadpoles in a response surface design and quantified growth. We then observed the effect of a dragonfly larvae predator (Anax amazili) on tadpole growth and survival at different size-structured treatments. Large tadpoles were greater per individual competitors while hatchlings were greater per gram competitors. When predators were added, dragonflies reduced survival and growth of hatchlings substantially, but had no effect on large tadpoles. Further, dragonflies reduced hatchling growth more when other hatchlings were present. The predator effect on hatchling growth was 23% larger than the effect of competition with large tadpoles, such that the importance of size structure for A. callidryas may be mediated more through predation than intercohort competition.
4

Predator Effects of the Invasive Green Crab (Carcinus maenas) and the Native Rock Crab (Cancer irroratus) on Soft-Sediment Macrofauna

Cheverie, Anne 07 December 2012 (has links)
When multiple predators foraging together have different individual consumption rates than predators foraging in isolation, they exhibit non-independent multiple predator effects on prey. I examined multiple predator effects in a system consisting of invasive green crabs (Carcinus maenas L.), native rock crabs (Cancer irroratus Say) and benthic macrofauna prey. First, I examined multiple predator effects when green crabs and rock crabs forage on soft-shell clams (Mya arenaria L.) in different habitat types (sand, sand with artificial seagrass) and assessed the behavioural mechanisms responsible for the observed predation effects. Independent multiple predator effects on prey were detected for most conspecific and heterospecific pairs in both habitat types. In general, crab foraging behaviours were not affected by the presence of another predator. Interactions between predators did not influence foraging behaviours because encounters were infrequent, short in duration and predominantly non-aggressive. A non-independent multiple predator effect on prey (marginally significant) was observed when green crabs foraged with rock crabs in artificial seagrass. This effect, however, could not be explained by the observed crab behaviours. Second, I investigated multiple predator effects when green crabs and rock crabs forage on a soft-sediment macrofauna community. Because crabs did not have significant predation effects on the community throughout the experiment, I did not evaluate multiple predator effects on prey. It is possible that crab predation was not important in regulating the macrofauna community, in which case multiple predator effects were non-existent. Predation may have been suppressed due to a combination of factors, including interactions between predators, harsh environmental conditions or a sub-optimal prey field. Alternatively, my ability to detect significant predation effects may have been hindered because of prey movement in and out of cages or low statistical power. Overall, results from this thesis demonstrate that multiple predator effects on prey may differ with habitat and highlights the importance of conducting behavioural observations to better understand interactions between predators and the resulting consequences for prey. Multiple predator effects on a soft-sediment community should be re-evaluated to assess the importance of these crab species in regulating benthic macrofauna under natural conditions.
5

Non-Consumptive Effects of Predators in Coral Reef Communities and the Indirect Consequences of Marine Protected Areas

Catano, Laura 05 November 2014 (has links)
Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.
6

Behavioral and ecological consequences of multiple intraguild predators and connections between predators, prey, and ecosystem function

Sitvarin, Michael Ian 25 August 2014 (has links)
No description available.

Page generated in 0.0551 seconds