• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predição de relacionamentos em redes sociais

SÁ, Hially Rodrigues de 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T16:00:36Z (GMT). No. of bitstreams: 2 arquivo6801_1.pdf: 1400447 bytes, checksum: 82d5aa21900e4c2f42e7f550a790713e (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / Universidade Federal de Pernambuco / A Predição de Relacionamentos (Link Prediction) é uma importante atividade no campo da Análise em Redes Sociais. Esta atividade se refere em predizer o surgimento de relacionamentos futuros entre os nós em uma rede social. Uma das estratégias para realizar as predições se dá por meio da aprendizagem supervisionada. Neste caso, a predição é tratada como um problema de classificação binária. Os atributos preditores são as métricas computadas para indicar a proximidade ou similaridade de um par de nós. As classes positiva e negativa representam, respectivamente, a presença e ausência de um relacionamento entre esse par no futuro. Apesar de ser uma abordagem bem consolidada na literatura, a maioria das pesquisas que emprega a aprendizagem supervisionada utiliza apenas redes sem pesos. Atribuir pesos para os relacionamentos da rede é uma maneira de expressar a força dos relacionamentos entre os nós, o que pode potencialmente fornecer informações úteis para a predição. Estudos têm demonstrado que a utilidade de empregar pesos nos relacionamentos com abordagens não supervisionadas ainda é controversa, enquanto este ponto é pouco explorado na abordagem supervisionada. Neste contexto, o objetivo principal deste trabalho foi investigar se adotar pesos nos relacionamentos entre os nós contribui para a otimização do desempenho da predição supervisionada. A avaliação se deu pela comparação de diferentes algoritmos de classificação em redes com e sem pesos. De modo geral, os resultados com a predição supervisionada em duas redes de coautorias revelaram que uma pequena, mas relevante melhoria de desempenho foi obtida quando os pesos foram considerados

Page generated in 0.1 seconds