Spelling suggestions: "subject:"predictions (box4enkins codels)"" "subject:"predictions (box4enkins 2models)""
1 |
Máquinas desorganizadas para previsão de séries de vazões / Unorganized machines to seasonal streamflow series forecastingSiqueira, Hugo Valadares, 1983- 24 August 2018 (has links)
Orientadores: Christiano Lyra Filho, Romis Ribeiro de Faissol Attux / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-24T05:06:09Z (GMT). No. of bitstreams: 1
Siqueira_HugoValadares_D.pdf: 10867937 bytes, checksum: 512652380d6dd25b8717bfd5c8f5f0f8 (MD5)
Previous issue date: 2013 / Resumo: Este trabalho explora a possibilidade de aplicação de arquiteturas de redes neurais artificiais - redes neurais de estado de eco (ESN) e máquinas de aprendizado extremo (ELM) - aqui denominadas coletivamente por máquinas desorganizadas (MDs), para a previsão de séries de vazões. A previsão de vazões é uma das etapas fundamentais no planejamento da operação dos sistemas de energia elétrica com predominância hidráulica, como é o caso brasileiro. Os modelos mais comumente utilizados para previsão de vazões pelo Setor Elétrico Brasileiro (SEB) são baseados na metodologia Box & Jenkins, lineares, sobretudo modelos periódicos auto-regressivos (PAR). Todavia, técnicas mais abrangentes, que alcancem melhores desempenhos, vêm sendo investigadas. Destacam-se as redes neurais artificiais, sobretudo arquiteturas do tipo perceptron de múltiplas camadas (MLP), muito conhecidas por serem aproximadores universais com elevada capacidade de aprendizado e mapeamento não-linear, características desejáveis para solução do problema em questão. Por outro lado, as máquinas desorganizadas têm apresentado resultados promissores na previsão de séries temporais. Estes modelos têm um processo de treinamento simples, baseado em encontrar os coeficientes de um combinador linear; em particular, não precisam fazer ajuste dos pesos de sua camada intermediária, ao contrário das redes MLP. Por isso, este trabalho investigou as MDs do tipo ESN e ELM, versões recorrente e não-recorrente, respectivamente, para previsão de vazões médias mensais. Serão avaliadas também três técnicas para retirada da componente sazonal característica destas séries ¿ médias móveis, padronização e diferenças sazonal ¿ além da exploração de técnicas de seleção de variáveis do tipo filtro e wrapper, no intuito de melhorar performance dos modelos preditores. Na maioria dos casos estudados, os resultados obtidos pelas MDs na previsão das séries associadas a importantes usinas hidrelétricas brasileiras - Furnas, Emborcação e Sobradinho - em cenários com horizontes variados, mostraram-se de melhor qualidade do que os obtidos pelo modelo PAR e as redes neurais MLPs / Abstract: This work explores the possibility of application of neural network architectures ¿ echo state networks (ESN) and extreme learning machines (ELM) ¿ collectively referred as unorganized machines (UMs), to seasonal streamflow series forecasting. Streamflow forecasting is one of the key steps in the planning of operation of power systems with hydraulic predominance, as in the Brazilian case. The models most commonly used to streamflow prediction by the Brazilian Electric Sector are based on the Box & Jenkins methodology, with linear and especially periodic autoregressive models. However, more extensive techniques that achieve better performances have been investigated to this task. We highlight artificial neural networks, especially architectures such as multilayer perceptron (MLP), known to be universal approximators with high learning ability skills ability to perform nonlinear mapping, desirable characteristics for the solution of this problem. On the other hand, unorganized machines have shown promising results in time series forecasting. These models have a simple training process, based on finding the coefficients of a linear combiner; they do not require adjustments in the weights of the hidden layer, which are necessary with MLP architecture. Therefore, this study investigated the UMs such as ESN and ELM, recurrent and nonrecurrent versions, respectively, to seasonal streamflow series forecasting. Three techniques to remove the seasonal component of streamflow series will also be evaluated - moving averages, standardization and seasonal differences. In addition, In order to improve the performance of predictive models techniques for variable selection, such as filters and wrappers, will also be explored. In the most cases, the computational results obtained by the UMs in streamflow series forecasting associated to important Brazilian hydroelectric plants - Furnas, Emborcação and Sobradinho - with scenarios including several horizons, presented better performance when compared to forecasting obtained with PAR models and MLPs / Doutorado / Energia Eletrica / Doutor em Engenharia Elétrica
|
Page generated in 0.0875 seconds