• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Predictive Control Model for a Heat Pump System Based on Artificial Neural Networks (ANN) approach

Zare, Kourosh Abbas January 2019 (has links)
No description available.
2

Multiplicative robust and stochastic MPC with application to wind turbine control

Evans, Martin A. January 2014 (has links)
A robust model predictive control algorithm is presented that explicitly handles multiplicative, or parametric, uncertainty in linear discrete models over a finite horizon. The uncertainty in the predicted future states and inputs is bounded by polytopes. The computational cost of running the controller is reduced by calculating matrices offline that provide a means to construct outer approximations to robust constraints to be applied online. The robust algorithm is extended to problems of uncertain models with an allowed probability of violation of constraints. The probabilistic degrees of satisfaction are approximated by one-step ahead sampling, with a greedy solution to the resulting mixed integer problem. An algorithm is given to enlarge a robustly invariant terminal set to exploit the probabilistic constraints. Exponential basis functions are used to create a Robust MPC algorithm for which the predictions are defined over the infinite horizon. The control degrees of freedom are weights that define the bounds on the state and input uncertainty when multiplied by the basis functions. The controller handles multiplicative and additive uncertainty. Robust MPC is applied to the problem of wind turbine control. Rotor speed and tower oscillations are controlled by a low sample rate robust predictive controller. The prediction model has multiplicative and additive uncertainty due to the uncertainty in short-term future wind speeds and in model linearisation. Robust MPC is compared to nominal MPC by means of a high-fidelity numerical simulation of a wind turbine under the two controllers in a wide range of simulated wind conditions.
3

Control Development and Design Optimization of Dual Three Phase Permanent Magnet Synchronous Machines

CHOWDHURY, ANIK 27 October 2022 (has links)
No description available.

Page generated in 0.0769 seconds