• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictively Mapping the Plant Associations of the North Fork John Day Wilderness in Northeastern Oregon Using Classification Tree Modeling

Kelly, Alison M. 01 May 1999 (has links)
Shifting perspectives on restoration and management of public lands in the inland West have resulted in an increased need for maps of potential natural vegetation which cover large areas at sufficient scale to delineate individual stands . In this study, classification tree modeling was used to predictively model and map the plant association types of a relatively undisturbed wilderness area in the Blue Mountains of northeastern Oregon. Models were developed using field data and data derived from a geographic information system database. Elevation, slope, aspect, annual precipitation, solar radiation, soil type, and topographic position were important predictor variables. The model predicted plant association types with a relatively high degree of accuracy for most plant association types, with the lowest accuracy for the types within the grand fir series. Fuzzy confusion analysis was used to analyze model performance, and indicated the overall model accuracy was 72%.

Page generated in 0.0779 seconds