• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

General queueing networks with priorities : maximum entropy analysis of general queueing network models with priority pre-emptive resume or head-of-line and non-priority based service disciplines

Tabet Aouel, Nasreddine January 1989 (has links)
Priority based scheduling disciplines are widely used by existing computer operating systems. However, the mathematical analysis and modelling of these systems present great difficulties since priority schedulling is not compatible with exact product form solutions of queueing network models (QNM's). It is therefore, necessary to employ credible approximate techniques for solving QNM's with priority classes. The principle of maximum entropy (ME) is a method of inference for estimating a probability distribution given prior information in the form of expected values. This principle is applied, based on marginal utilisation, mean queue length and idle state probability constraints, to characterise new product-form approximations for general open and closed QNM's with priority (preemptive-resume, non-preemtive head-of-line) and non-priority (first-come-first-served, processor-sharing, last-come-first-served with, or without preemtion) servers. The ME solutions are interpreted in terms of a decomposition of the original network into individual stable GIG11 queueing stations with assumed renewal arrival processes. These solutions are implemented by making use of the generalised exponential (GE) distributional model to approximate the interarrival-time and service-time distributions in the network. As a consequence the ME queue length distribution of the stable GE/GEzl priority queue, subject to mean value constraints obtained via classical queueing theory on bulk queues, is used as a 'building block' together with corresponding universal approximate flow formulae for the analysis of general QNM's with priorities. The credibility of the ME method is demonstrated with illustrative numerical examples and favourable comparisons against exact, simulation and other approximate methods are made.
2

General queueing networks with priorities. Maximum entropy analysis of general queueing network models with priority preemptive resume or head-of-line and non-priority based service disciplines.

Tabet Aouel, Nasreddine January 1989 (has links)
Priority based scheduling disciplines are widely used by existing computer operating systems. However, the mathematical analysis and modelling of these systems present great difficulties since priority schedulling is not compatible with exact product form solutions of queueing network models (QNM's). It is therefore, necessary to employ credible approximate techniques for solving QNM's with priority classes. The principle of maximum entropy (ME) is a method of inference for estimating a probability distribution given prior information in the form of expected values. This principle is applied, based on marginal utilisation, mean queue length and idle state probability constraints, to characterise new product-form approximations for general open and closed QNM's with priority (preemptive-resume, non-preemtive head-of-line) and non-priority (first-come-first-served, processor-sharing, last-come-first-served with, or without preemtion) servers. The ME solutions are interpreted in terms of a decomposition of the original network into individual stable GIG11 queueing stations with assumed renewal arrival processes. These solutions are implemented by making use of the generalised exponential (GE) distributional model to approximate the interarrival-time and service-time distributions in the network. As a consequence the ME queue length distribution of the stable GE/GEzl priority queue, subject to mean value constraints obtained via classical queueing theory on bulk queues, is used as a 'building block' together with corresponding universal approximate flow formulae for the analysis of general QNM's with priorities. The credibility of the ME method is demonstrated with illustrative numerical examples and favourable comparisons against exact, simulation and other approximate methods are made. / Algerian government
3

Entropy Maximisation and Open Queueing Networks with Priority and Blocking.

Kouvatsos, Demetres D., Awan, Irfan U. January 2003 (has links)
No / A review is carried out on the characterisation and algorithmic implementation of an extended product-form approximation, based on the principle of maximum entropy (ME), for a wide class of arbitrary finite capacity open queueing network models (QNMs) with service and space priorities. A single server finite capacity GE/GE/1/N queue with R (R>1) distinct priority classes, compound Poisson arrival processes (CPPs) with geometrically distributed batches and generalised exponential (GE) service times is analysed via entropy maximisation, subject to suitable GE-type queueing theoretic constraints, under preemptive resume (PR) and head-of-line (HOL) scheduling rules combined with complete buffer sharing (CBS) and partial buffer sharing (PBS) management schemes stipulating a sequence of buffer thresholds {N=(N1,¿,NR),0<Ni¿Ni¿1,i=2,¿,R}. The GE/GE/1/N queue is utilised, in conjunction with GE-type first two moment flow approximation formulae, as a cost-effective building block towards the establishment of a generic ME queue-by-queue decomposition algorithm for arbitrary open QNMs with space and service priorities under repetitive service blocking with random destination (RS-RD). Typical numerical results are included to illustrate the credibility of the ME algorithm against simulation for various network topologies and define experimentally pessimistic GE-type performance bounds. Remarks on the extensions of the ME algorithm to other types of blocking mechanisms, such as repetitive service blocking with fixed destination (RS-FD) and blocking-after-service (BAS), are included.

Page generated in 0.0355 seconds