• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Simulation of Flow Field Inside a Squeeze Film Damper and the Study of the Effect of Cavitation on the Pressure Distribution

Khandare, Milind Nandkumar 2010 December 1900 (has links)
Squeeze Film Dampers (SFDs) are employed in high-speed Turbomachinery, particularly aircraft jet engines, to provide external damping. Despite numerous successful applications, it is widely acknowledged that the theoretical models used for SFD design are either overly simplified or incapable of taking into account all the features such as cavitation, air entrainment etc., affecting the performance of a SFD. On the other hand, experimental investigation of flow field and dynamic performance of SFDs can be expensive and time consuming. The current work simulates the flow field inside the dynamically deforming annular gap of a SFD using the commercial computational fluid dynamics (CFD) code Fluent and compares the results to the experimental data of San Andrés and Delgado. The dynamic mesh capability of Fluent and a User Defined Function (UDF) was used to replicate the deforming gap and motion of the rotor respectively. Two dimensional simulations were first performed with different combinations of rotor whirl speed, operating pressures and with and without incorporating the cavitation model. The fluid used in the simulations was ISO VG 2 Mobil Velocite no. 3. After the successful use of the cavitation model in the 2D case, a 3D model with the same dimensions as the experimental setup was built and meshed. The simulations were run for a whirl speed of 50 Hz and an orbit amplitude of 74 μm with no through flow and an inlet pressure of 31kPa (gauge). The resulting pressures at the mid-span of the SFD land were obtained. They closely agreed with those obtained experimentally by San Andrés and Delgado.

Page generated in 0.1215 seconds