Spelling suggestions: "subject:"bpressure poisson aquation reformulation"" "subject:"bpressure poisson aquation deformulation""
1 |
High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equationsZhou, Dong January 2014 (has links)
Projection methods for the incompressible Navier-Stokes equations (NSE) are efficient, but introduce numerical boundary layers and have limited temporal accuracy due to their fractional step nature. The Pressure Poisson Equation (PPE) reformulations represent a class of methods that replace the incompressibility constraint by a Poisson equation for the pressure, with a suitable choice of the boundary condition so that the incompressibility is maintained. PPE reformulations of the NSE have important advantages: the pressure is no longer implicitly coupled to the velocity, thus can be directly recovered by solving a Poisson equation, and no numerical boundary layers are generated; arbitrary order time-stepping schemes can be used to achieve high order accuracy in time. In this thesis, we focus on numerical approaches of the PPE reformulations, in particular, the Shirokoff-Rosales (SR) PPE reformulation. Interestingly, the electric boundary conditions, i.e., the tangential and divergence boundary conditions, provided for the velocity in the SR PPE reformulation render classical nodal finite elements non-convergent. We propose two alternative methodologies, mixed finite element methods and meshfree finite differences, and demonstrate that these approaches allow for arbitrary order of accuracy both in space and in time. / Mathematics
|
Page generated in 0.1369 seconds