• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pore pressure response of liquefiable soil treated with prefabricated vertical drains : experimental observations and numerical predictions / Experimental observations and numerical predictions

Tsiapas, Ioannis, 1986- 09 July 2012 (has links)
Prefabricated vertical drains represent a soil improvement technique that achieves liquefaction mitigation by decreasing the drainage path length and hence expediting the dissipation of excess pore pressures. When evaluating the required spacing between vertical drains to achieve the desired reduction in pore pressure response, simplified design charts or more sophisticated finite element analyses are used to predict the pore pressure response. These charts and programs have not been evaluated in terms of their accuracy because there exists little data with which to compare the numerical predictions. More recently, the effectiveness of prefabricated vertical drains for liquefaction mitigation has been evaluated via small – scale centrifuge testing performed on untreated soil deposits and on soil deposits treated with vertical drains. In particular, the performance of the soil deposits subjected to sinusoidal motions and actual earthquake recordings was tested. The main goal of this research is to compare the experimental observations of pore pressure response from the centrifuge experiments with the numerical predictions. The comparison focuses on the average excess pore pressure ratio (r_(u,avg)) that was developed in the location of a vertical pore pressure array in both the untreated and drain – treated sides of the models. In parallel, a parametric study is performed for the numerical predictions in order to study the effect of each input parameter that influences the pore pressure prediction, namely the effect of soil properties, ground motion characteristics and drain parameters. The numerical predictions are found to provide reliable predictions of the pore pressure response despite the simplicity of the constitutive model employed. The numerical predictions of r_(u,avg) time – histories are generally in good agreement with the recorded values in the centrifuge experiments. In most of the cases, the numerical model managed to predict the same maximum average excess pore pressure ratio, which is the parameter that is used in drain design. To incorporate any uncertainty on the soil properties or on the characteristics of shaking, the use of a smaller pore pressure threshold for drain design is recommended. / text
2

An Investigation on How Satisfaction Related to Strategic Human Resource Management of Nursing Stuff and Leadership Typology

Chen, Li-Ya 04 September 2003 (has links)
Hospital management changes rapidly along with medical environments. Nowadays, hospital managers emphasize not only on the control of hospital cost, but also effective implementation of human resources. Attitude influences the behaviors of staff, which directly affect their performance. In organizations, employees with low satisfaction are not able to make good performance. How do managers make the use of strategic human resource management to help professional nursing staff have the best performance? How do nursing executives implement proper management on professional nursing staff? Is there any relationship between strategic human resource management and leadership typology? Does psychological pressure response of nursing staff influence the effectiveness of strategic human resource management and leadership? Those are important issues to be discussed in this research. The results showed the significant relationships between strategic human resource management and satisfaction of staff. Participating and authorizing leadership have positive relationships on staff¡¦s satisfaction. Strategic human resource management and staff¡¦s satisfaction have significant effect. Participating leadership and staff¡¦s satisfaction have positive effect. Psychological pressure response has negative effect on staff¡¦s satisfaction. Education training of human capital management, communication of internal relationship management and structural capital management interact with psychological pressure response respectively. The interaction of participating leadership and psychological pressure response has significant influence on internal satisfaction of staff. In the analysis on differences between personal attributes and related issues, it is found that there are significant differences on license years, working years, age and marital states of nursing staff, hospital locations, and hospital levels for ¡§education training¡¨, working departments, and academic degrees.
3

History matching pressure response functions from production data

Ibrahim, Mazher Hassan 17 February 2005 (has links)
This dissertation presents several new techniques for the analysis of the long-term production performance of tight gas wells. The main objectives of this work are to determine pressure response function for long-term production for a the slightly compressible liquid case, to determine the original gas in place (OGIP) during pseudosteady state (PSS), to determine OGIP in the transient period, and to determine the effects of these parameters on linear flow in gas wells. Several methods are available in the industry to analyze the production performance of gas wells. One common method is superposition time. This method has the advantage of being able to analyze variable-rate and variable-pressure data, which is usually the nature of field data. However, this method has its shortcomings. In this work, simulation and field cases illustrate the shortcomings of superposition. I present a new normalized pseudotime plotting function for use in the superposition method to smooth field data and more accurately calculate OGIP. The use of this normalized pseudotime is particularly important in the analysis of highly depleted reservoirs with large change in total compressibility where the superposition errors are largest. The new tangent method presented here can calculate the OGIP with current reservoir properties for both constant rate and bottomhole flowing pressure (pwf) production. In this approach pressure-dependent permeability data can be integrated into a modified real gas pseudopressure,m(p), which linearizes the reservoir flow equations and provides correct values for permeability and skin factor. But if the customary real-gas pseudopressure, m(p) is used instead, erroneous values for permeability and skin factor will be calculated. This method uses an exponential equation form for permeability vs. pressure drop. Simulation and field examples confirm that the new correction factor for the rate dependent problem improves the linear model for both PSS and transient period, whether plotted on square-root of time or superposition plots.
4

Mean Loading and Turbulence Scale Effects on the Surface Pressure Fluctuations Occurring on a NACA 0015 Airfoil Immersed in Grid Generated Turbulence

Mish, Patrick F. 26 June 2001 (has links)
Detailed surface pressure measurements have been made on a NACA 0015 immersed in two grid generated homogenous flows at Re = 1.17 x 10⁶ for a = 0°, 4°, 8°, 12°, 16°, and 20°. The goal of this measurement was to reveal and highlight mean loading and turbulence scale effects on surface pressure fluctuations resulting from turbulence/airfoil interaction. Also, measurements are compared with the theory of Amiet (1976a,b). The surface pressure response shows a dependance on angle of attack, the nature of which is related to the relative chord/turbulence scale. The dependance on turbulence scale appears to be non-monotonic at low reduced frequencies, wr = Pi*f*c/U with both an increase and decrease in unsteady pressure magnitude occurring with increasing mean load. A reduced frequency overlap region exists at wr > 10 where the two different scale flows begin to produce similar effects on the surface pressure with increasing angle of attack manifesting as a rise in unsteady surface pressure magnitude. Also, the interaction of the full 3-dimensional wavenumber spectrum affects the distance over which pressure fluctuations correlate and the extent of correlation is affected by angle of attack as demonstrated in the chordwise and spanwise pressure correlation. Amiet's theory is shown to agree favorably with measurements in the leading edge region although demonstrates insufficiencies in predicting unsteady pressure phasing. / Master of Science
5

Study of the effects of unsteady heat release in combustion instability

Arnau Pons Lorente (9187553) 30 July 2020 (has links)
Rocket combustors and other high-performance chemical propulsion systems are prone to combustion instability. Recent simulations of rocket combustors using detailed chemical kinetics show that the constant pressure assumption used in classical treatments may be suspect due to high rates of heat release. This study is a exploration on the effects of these extraordinary rates of heat addition on the local pressure field, and interactions between the heat release and an acoustic field. <br> <br>The full problem is decomposed into simpler unit problems focused on the particular interactions of physical phenomena involved in combustion instability. The overall strategy consists of analyzing fundamental problems with simplified scenarios and then build up the complexity by adding more phenomena to the analysis. Seven unit problems are proposed in this study. <br> <br>The first unit problem consists of the pressure response to an unsteady heat release source in an unconfined one-dimensional domain. An analytical model based on the acoustic wave equation with planar symmetry and an unsteady heat source is derived and then compared against results from highly-resolved numerical simulations. Two different heat release profiles, one a Gaussian spatial distribution with a step temporal profile, and the other a Gaussian spatial distribution with a Gaussian temporal distribution, are used to model the heat source. The analytical solutions predict two different regimes in the pressure response depending on the Helmholtz number, which is defined as the ratio of the acoustic time over the duration of the heat release pulse. A critical Helmholtz number is found to dictate the pressure response regime. For compact cases, in the subcritical regime, the amplitude of the pressure pulse remains constant in space. For noncompact cases, above the critical Helmholtz number, the pressure pulse reaches a maximum at the center of the heat source, and then decays in space converging to a lower far field amplitude. At the limits of very small and very large Helmholtz numbers, the heat release response tends to be a constant pressure process and a constant volume process, respectively. The parameters of the study are chosen to be representative of the extreme conditions in a rocket combustor. The analytical models for both heat source profiles closely match the simulations with a slight overprediction. The differences observed in the analytical solutions are due to neglecting mean flow property variations and the absence of loss mechanisms. The numerical simulations also reveal the presence of nonlinear effects such as weak shocks that cannot be captured by the linear acoustic wave equation. <br> <br>The second unit problem extends the analysis of the pressure response of an unsteady heat release source to an unconfined three-dimensional domain. An analytical model based on the spherical acoustic wave equation with an unsteady heat source is derived and then compared against results from highly-resolved three-dimensional numerical simulations. Two different heat release profiles, a three-dimensional Gaussian spherical distribution with either a step or a Gaussian temporal distribution, are used to model the heat source. Two different regimes in the pressure response depending on the Helmholtz number are found. This analysis also reveals that whereas for the one-dimensional case the pressure amplitude is constant over the distance, for the three-dimensional case it decays with the radial distance from the heat source. In addition, although for moderate heat release values the analytical solution is able to capture the dynamics of the fluid response, for large heat release values the nonlinear effects deviate the highly-resolved numerical solution from the analytical model. <br> <br>The third unit problem studies the pressure response of a fluctuating unsteady heat release source to an unconfined one-dimensional domain. An analytical model based on the acoustic wave equation with planar symmetry and an unsteady heat source is derived and then compared against results from highly-resolved numerical simulations. Two different heat release profiles, a flat spatial distribution with sinusoidal temporal profile and a Gaussian spatial distribution and sinusoidal temporal profile, are used to model the heat source. For both cases, the acoustically compact and noncompact regimes depending on the Helmholtz number are analyzed. While in the compact regime the amplitude of the pressure is constant over the distance, in the noncompact regime the amplitude of the pressure fluctuation is larger within the heat source area of application, and once outside the heat source decays to a far field pressure value. In addition, the analytical model does not capture the nonlinear effects present in the highly-resolved numerical simulations for large rates of heat release such as the ones present in rocket combustors.<br> <br>Finally, the last four unit problems focus on the interaction between unsteady heat release and the longitudinal acoustic modes of a combustor. The goal is to assess and quantify how pressure fluctuations due to unsteady heat release amplify a longitudinal acoustic mode. To investigate the nonlinear effects and the limitations based on the acoustic wave equation, the analytical models are compared against highly-resolved numerical simulations. The fourth unit problem consists of the pressure response to a moving rigid surface that generates a forced sinusoidal velocity fluctuation in a one-dimensional open-ended cavity. The fifth unit problem combines an analytical solution from the velocity harmonic fluctuation with an unsteady heat pulse with Gaussian spatial and temporal distribution developed in the first unit problem. The choice of an open-ended cavity simplifies the analysis and serves as a stepping stone to the sixth unit problem, which also includes the pressure reflections provoked by the acoustic boundaries of the duct. This sixth unit problem describes the establishment of a 1L acoustic longitudinal mode inside a closed duct using the harmonic velocity fluctuations from the fourth unit problem. A wall on the left end of the duct is only moved for one cycle at the 1L mode frequency to establish a 1L mode in the initially quiescent fluid. The last unit problem combines the analytical solution of the 1L mode acoustic field developed in the sixth unit problem with an unsteady heat pulse with Gaussian spatial and temporal distribution, and also accounts for pressure reflections. The derivation of the present analytical models includes the identification of relevant length and time scales that are condensed into the Helmholtz number, the phase shift between the longitudinal fluctuating pressure field and the heat source, and ratio of the fluctuating periods. The analytical solution is able to capture with an acceptable degree of accuracy the pressure trace of the numerical solution during the fist few cycles of the 1L mode, but it quickly deviates very significantly from the numerical solution due to wave steepening and the formation of weak shocks. Therefore, models based on the acoustic wave equation can provide a good understanding of the combustion instability behavior, but not accurately predict the evolution of the pressure fluctuations as the nonlinear effects play a major role in the combustion dynamics of liquid rocket engines.

Page generated in 0.0479 seconds