• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase inversion in the process for making tackifier dispersions used in pressure sensitive adhesives

Song, Daoyun. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains xv, 188 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 172-182).
2

The interactions of pressure sensitive adhesive with paper surfaces

Zhao, Boxin. Pelton, Robert H. January 2004 (has links)
Thesis (Ph.D.)--McMaster University, 2004. / Supervisor: Robert Pelton. Includes bibliographical references.
3

Conjugated Linoleic Acid/Styrene/Butyl Acrylate Bulk and Emulsion Polymerization

Roberge, Stéphane January 2016 (has links)
The potential for conjugated linoleic acid (CLA) incorporation into pressure-sensitive adhesive (PSA) formulations was evaluated. A series of free radical bulk copolymerizations of CLA/styrene (Sty) and CLA/butyl acrylate (BA) were designed to allow the estimation of reactivity ratios. Bulk terpolymerizations of CLA/Sty/BA were also evaluated before moving to emulsion terpolymerizations of CLA/Sty/BA. The polymers were characterized for composition, conversion, molecular weight and glass transition temperature while latexes were characterized for viscosity, particle size, tack, peel strength, and shear strength. All experiments were performed at 80oC and monitored with attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. While bulk experiments were monitored off-line, the emulsion experiments were monitored in-line. Absorbance peaks related to the monomers and polymer were tracked to provide conversion and polymer composition data using a multivariate calibration method. Off-line measurements using gravimetry and 1H-NMR spectroscopy were compared to the ATR-FTIR data and no significant differences were detected between the measurement methods. Pseudo-kinetic models, developed and validated with the copolymer experimental data, were used to estimate reactivity ratios. The copolymer pseudo-kinetic models were extended to a terpolymer pseudo-kinetic model and validated with experimental data. The pseudo-kinetic models incorporated the ability of oleic acid, a common impurity found in CLA, to trap electrons thus influencing the reaction kinetics significantly. The influence of terpolymer composition, chain transfer agent concentration, cross-linker concentration, molecular weight, viscosity and particle size on tack, peel strength and shear strength was investigated by using a constrained mixture design. The final forms of the resulting empirical models allowed the creation of 3D response surfaces for PSA performance optimization. The incorporation of 30 wt.% CLA into a practical PSA application suitable for the removable adhesives category was achieved.
4

Testing and Analysis of the Peeling of Medical Adhesives From Human Skin

Karwoski, Alicia Corrine 27 June 2003 (has links)
The analysis of peeling tape or a bandage from skin is a challenging problem. Skin is a very complex material made of many layers with anisotropic material properties. Adhesives that bond tapes or patches to skin must attach to skin through moisture and skin movement, but then be removed with little skin trauma. A computer model of peeling from skin apparently has not been developed previously. With experiments and the application of mechanics, research was conducted to analyze adhesion to skin. Numerous peeling experiments were performed on human subject arms using 2.54-cm-wide pressure sensitive tape Durapore™ by 3M. Various rates, angles, and dwell times were tested. Testing machines recorded peel force and the displacement of the end of the tape. A range of maximum and average peeling force values were noted for human subjects, along with the influence of angle, rate, order of testing, dwell time, and subject. Also, rigid substrates were tested for comparison with human skin. Computer models were also developed to simulate peeling and skin behavior. Initial models dealt with peeling from a rigid surface, and intermediate models concerned plucking skin. The final model involved peeling a piece of tape from skin, the overall goal of this research. The skin and tape were modeled as they behave during peeling. With the final model, the peel angle, debonding moment, normal force on the skin, and net shear force tangential to the skin were analyzed. Results from the experiments and computer models of this research will increase knowledge of skin behavior and could contribute to improvements in the design of adhesives that contact the skin. / Master of Science
5

Performance Improvement of Latex-based PSAs Using Polymer Microstructure Control

Qie, Lili 02 February 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength. In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings. In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased. In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains. In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure. Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.
6

Performance Improvement of Latex-based PSAs Using Polymer Microstructure Control

Qie, Lili 02 February 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength. In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings. In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased. In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains. In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure. Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.
7

Performance Improvement of Latex-based PSAs Using Polymer Microstructure Control

Qie, Lili 02 February 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength. In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings. In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased. In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains. In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure. Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.
8

Cellulose Nanocrystals: Renewable Property Modifiers for Pressure Sensitive Adhesives

Dastjerdi, Zahra January 2017 (has links)
Pressure sensitive adhesives (PSAs) are polymeric materials with versatile applications in industrial and consumer products such as protective films, product labels, masking tape, and sticky notes, to name a few applications. World demand for emulsion–based products is on the rise due to worldwide legislation on solvent emissions. In order to completely replace emulsion-based PSAs with their solvent-based counterpart, the property modification of emulsion-based PSAs is required. The use of nanomaterials to modify polymer properties is well established. The aim of this thesis was to use cellulose nanocrystals (CNCs) as property modifiers for emulsion-based PSAs. CNCs are recognized as a highly efficient reinforcement nanofiller. Owing to their environmentally friendly characteristics, low density, high aspect ratio, non-toxicity, and abundant availability, the application of CNCs in composite materials is gaining increasing attention. In this thesis, the inclusion of CNCs in emulsion-based PSAs was carried out through in situ emulsion polymerization and blending technique. To the best of our knowledge, there is limited information about the synthesis of CNC/PSAs nanocomposites via in situ emulsion polymerization and the evaluation of their mechanical performance. The addition of CNCs to the polymerization formulation caused latex instability due to the negatively charged surfaces of the CNCs. After numerous attempts to overcome the stability issues, a stable polymerization formulation and protocol were developed. CNC/PSAs were synthesized via in situ seeded-semi batch emulsion polymerization, which is a common commercial production pathway for PSAs. The mechanical performance of the resulting PSA nanocomposite films, namely, shear strength, tack, and peel strength, was evaluated at several CNC loadings. All three PSA adhesive properties were simultaneously enhanced with increasing CNC loading. The inclusion of CNCs into the films increased their hydrophilicity. Consequently, the PSA films’ improved wettability on a stainless steel substrate imparted greater tack and peel strength. The blending of the CNCs with a base latex also led to improved adhesive properties. However, the property modification through blending was not as effective as that for the CNC/PSA films synthesized via in situ emulsion polymerization. Thus, CNCs are safe nanomaterials that have been shown to provide remarkable property enhancement of emulsion-based PSA films at low loadings (1wt%).
9

Polymer-grafted Cellulose Nanocrystals and their Incorporation into Latex-based Pressure Sensitive Adhesives

Kiriakou, Michael January 2020 (has links)
This thesis investigates the effect of reaction media on the efficiency of grafting hydrophobic polymers from cellulose nanocrystals (CNCs) via surface-initiated atom transfer radical polymerization (SI-ATRP), with the goal of producing highly-modified CNCs for incorporation into latex-based pressure sensitive adhesives (PSAs). A latex is a dispersion of polymer particles in water made by emulsion polymerization; latexes are commonly used in paints, coatings, elastomers, inks/toners, household products, cosmetics, and adhesives. However, latex-based PSAs often underperform compared to their organic solvent-polymerized counterparts due to a lack of cohesive strength in the cast latex films. The environmental benefit of using latex-based PSAs synthesized in water is significant, but the development of strategies to improve their performance are required. CNCs are hydrophilic rod-shaped nanoparticles with high mechanical strength. Adding CNCs to latex-based PSAs has been shown to improve both adhesive (i.e., tack and peel strength) and cohesive (i.e., shear strength) properties and offers a degree of sustainability because CNCs are derived from natural cellulose sources such as wood pulp. However, their hydrophilicity, particularly relative to the hydrophobic polymers used in PSAs, has constrained CNCs to the continuous (i.e., water) phase of the latex. To improve CNC compatibility with the dispersed (i.e., polymer) phase and improve their distribution in cast latex films, hydrophobic polymers can be grafted from CNCs. However, CNCs with a high polymer graft density are required to ensure their compatibility with monomers/polymers during latex synthesis. To begin, grafting poly(butyl acrylate) (PBA) from CNCs using SI-ATRP in polar dimethylformamide (DMF) versus non-polar toluene was directly compared. The enhanced colloidal stability of initiator-modified CNCs in DMF led to improved accessibility to surface initiator groups during polymer grafting. As such, PBA-grafted CNCs produced in DMF had up to 30 times more grafted polymer chains than PBA-grafted CNCs produced in toluene. The PBA-grafted CNCs produced in DMF showed high contact angles when cast in a film and formed stable suspensions in toluene. This work highlights that optimizing CNC colloidal stability in a given solvent prior to polymer grafting is a more crucial consideration than solvent–polymer compatibility in the context of obtaining high graft densities and thus hydrophobic CNCs via SI-ATRP. The improved polymer grafting method in DMF was then used to produce PBA and poly(methyl methacrylate) (PMMA)-grafted CNCs at two polymer chain lengths. Polymer grafted CNCs were incorporated in situ during a seeded semi-batch emulsion polymerization to produce PBA latex nanocomposite PSAs. Viscosity measurements revealed significant differences between latexes prepared with CNCs versus polymer-grafted CNCs, with the lower viscosities of the latter suggesting their incorporation inside the polymer particles. When CNCs with short polymer grafts were introduced into PSAs at 1 wt. % loading, they exhibited comparable tack and improved peel strength compared to unmodified CNCs (and all properties improved relative to the base latex without any CNCs). This is attributed to their improved distribution throughout the PSA, the enhanced wettability of the substrate with the CNC containing latex, and the increased polymer chain mobility achieved based on the low molecular weight of the grafts. CNCs with long polymer grafts aggregated in the latex and did not improve PSA properties. PMMA-grafted CNCs slightly outperformed PBA-grafted CNCs likely due to the higher glass transition temperature of PMMA. These results provide insight into future optimization of more sustainable latex-based PSA formulations as well as new commercial CNC-latex products, where the presence of low molecular weight grafts on CNC surfaces could improve polymer mobility and tack and peel strength. / Thesis / Master of Applied Science (MASc) / When the adhesives used in tapes, labels or sticky notes are produced using water-based reactions, they normally underperform compared to conventional adhesives produced using toxic solvents. To improve such water-based adhesives, adding nanocellulose (tiny particles derived from wood pulp) during synthesis has been shown to be an asset. Nanocellulose can be chemically modified to improve its compatibility with adhesive ingredients, and thus change the role of nanocellulose during adhesive manufacturing. In this thesis, modified nanocelluloses were added to water-based adhesives to evaluate their effect on performance (i.e., strength and stickiness). It was found that the reaction conditions during nanocellulose modification were crucial for obtaining highly modified particles that are compatible with adhesive ingredients. This work aims to provide insight for future production of less environmentally taxing adhesives made in water and expand the use of nanocellulose in new commercial products.
10

Performance Improvement of Latex-based PSAs Using Polymer Microstructure Control

Qie, Lili January 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength. In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings. In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased. In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains. In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure. Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.

Page generated in 0.1062 seconds