• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratory Simulation of Reservoir-induced Seismicity

Ying, Winnie (Wai Lai) 02 September 2010 (has links)
Pore pressure exists ubiquitously in the Earth’s subsurface and very often exhibits a cyclic loading on pre-existing faults due to seasonal and tidal changes, as well as the impoundment and discharge of surface reservoirs. The effect of oscillating pore pressure on induced seismicity is not fully understood. This effect exhibits a dynamic variation in effective stresses in space and time. The redistribution of pore pressure as a result of fluid flow and pressure oscillations can cause spatial and temporal changes in the shear strength of fault zones, which may result in delayed and protracted slips on pre-existing fractures. This research uses an experimental approach to investigate the effects of oscillating pore pressure on induced seismicity. With the aid of geophysical techniques, the spatial and temporal distribution of seismic events was reconstructed and analysed. Triaxial experiments were conducted on two types of sandstone, one with low permeability (Fontainebleau sandstone) and the other with high permeability (Darley Dale sandstone). Cyclic pore pressures were applied to the naturally-fractured samples to activate and reactivate the existing faults. The results indicate that the mechanical properties of the sample and the heterogeneity of the fault zone can influence the seismic response. Initial seismicity was induced by applying pore pressures that exceeded the previous maximum attained during the experiment. The reactivation of faults and foreshock sequences was found in the Fontainebleau sandstone experiment, a finding which indicates that oscillating pore pressure can induce seismicity for a longer period of time than a single-step increase in pore pressure. The corresponding strain change due to cyclic pore pressure changes suggests that progressive shearing occurred during the pore pressure cycles. This shearing progressively damaged the existing fault through the wearing of asperities, which in turn reduced the friction coefficient and, hence, reduced the shear strength of the fault. This ‘slow’ seismic mechanism contributed to the prolonged period of seismicity. This study also applied a material forecast model for the estimation of time-to-failure or peak seismicity in reservoir-induced seismicity, which may provide some general guidelines for short-term field case estimations.
2

Laboratory Simulation of Reservoir-induced Seismicity

Ying, Winnie (Wai Lai) 02 September 2010 (has links)
Pore pressure exists ubiquitously in the Earth’s subsurface and very often exhibits a cyclic loading on pre-existing faults due to seasonal and tidal changes, as well as the impoundment and discharge of surface reservoirs. The effect of oscillating pore pressure on induced seismicity is not fully understood. This effect exhibits a dynamic variation in effective stresses in space and time. The redistribution of pore pressure as a result of fluid flow and pressure oscillations can cause spatial and temporal changes in the shear strength of fault zones, which may result in delayed and protracted slips on pre-existing fractures. This research uses an experimental approach to investigate the effects of oscillating pore pressure on induced seismicity. With the aid of geophysical techniques, the spatial and temporal distribution of seismic events was reconstructed and analysed. Triaxial experiments were conducted on two types of sandstone, one with low permeability (Fontainebleau sandstone) and the other with high permeability (Darley Dale sandstone). Cyclic pore pressures were applied to the naturally-fractured samples to activate and reactivate the existing faults. The results indicate that the mechanical properties of the sample and the heterogeneity of the fault zone can influence the seismic response. Initial seismicity was induced by applying pore pressures that exceeded the previous maximum attained during the experiment. The reactivation of faults and foreshock sequences was found in the Fontainebleau sandstone experiment, a finding which indicates that oscillating pore pressure can induce seismicity for a longer period of time than a single-step increase in pore pressure. The corresponding strain change due to cyclic pore pressure changes suggests that progressive shearing occurred during the pore pressure cycles. This shearing progressively damaged the existing fault through the wearing of asperities, which in turn reduced the friction coefficient and, hence, reduced the shear strength of the fault. This ‘slow’ seismic mechanism contributed to the prolonged period of seismicity. This study also applied a material forecast model for the estimation of time-to-failure or peak seismicity in reservoir-induced seismicity, which may provide some general guidelines for short-term field case estimations.
3

EFFECT OF L/D AND YAW ANGLE ON FLOW OSCILLATIONS IN SUBSONIC RECTANGULAR CAVITIES

BAI, XINWEN January 2003 (has links)
No description available.
4

Experimental Studies of Spark-Ignition Knock in a Novel Dedicated Test Engine

Shi, Hao 02 1900 (has links)
Recently, some new technologies (e.g., downsizing, turbocharging) have been widely used in spark-ignition (SI) engines to achieve higher efficiencies and less emissions. However, the improved power density and in-cylinder pressure promote more engine knock, causing violent pressure oscillations and threatening engine integrity. Therefore, it is imperative to study engine knocking combustion more than ever; In-depth understandings of knock mechanism and characteristics are of utmost importance for controlling knock. With this emphasis, this thesis implements systematic studies to bridge the gap between knocking combustion characteristics and knock suppressing strategies. To investigate knock with optical and laser diagnostics, an optical compression-ignition (CI) engine was modified to operate under SI mode. A home-made metal liner with multiple spark plugs was used to trigger more controllable knock events via different spark strategies. Up to six pressure sensors were installed to collect the pressure signals from different sides. Next, the relationships between in-cylinder pressure, knock intensity, pressure fluctuation, heat release, and measurement location are analyzed to study the knock mechanism, influential factors, and measurement methods. The findings indicate a trade-off between the mass fraction and temperature of end-gas. The effects of compression ratio and fuel octane number are also explored. Moreover, the multichannel pressure monitoring is synchronized with high-speed imaging to investigate the flame propagation and knock development processes regarding the different spark strategies. The results give insights into the in-cylinder temperature inhomogeneity and how it affects the spatial distribution of auto-ignition sites. Furthermore, a new method is proposed to detect the local pressure fluctuations by setting a series of virtual flame monitors instead of pressure sensors. The results validate that this method provides a convenient and reliable way to study knock oscillations. Finally, this study presents a hydraulically actuated VCR (variable compression ratio) piston design to address knock challenges. The numerical simulation results show this VCR piston has a good adaptability and could help achieve high engine efficiencies, while keeping reasonable peak pressure to avoid heavy knock at high loads. However, more analysis work still needs to be implemented on its practical applications, e.g., the thermal stress and frictions under different operating conditions.
5

Impedance measurement in a hydrostatic drive

Müller, Benedikt, Baum, Heiko 25 June 2020 (has links)
Pressure oscillation in hydrostatic drive trains can cause noise and damage to components. They impair function and reliability. The visualization of the oscillation mode helps to clarify the causal relationships in the hydrostatic drive train and is a basis for the development of remedial measures. Analysis of the pressure oscillation situation, however, can only be carried out in the complete system, since line branching and the impedance of the hydrostats have an influence on the resonance frequencies and the oscillation modes. If only the line length between the components is considered in the pressure oscillation analysis, neither the calculated frequencies nor the position of the pressure antinodes where possible remedial measures are to be placed are correct. This paper presents the metrological determination of the impedance of a hydrostat on a functional test bench (“mobile impedance measurement”) and the preparation of the measurement data for the subsequent simulative pressure oscillation analysis of a hydraulic drive train.

Page generated in 0.1307 seconds