• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behavior of knot Floer homology under conway and genus two mutation

Moore, Allison Heather 23 October 2013 (has links)
In this dissertation we prove that if an n-stranded pretzel knot K has an essential Conway sphere, then there exists an Alexander grading s such that the rank of knot Floer homology in this grading, [mathematical equation], is at least two. As a consequence, we are able to easily classify pretzel knots admitting L-space surgeries. We conjecture that this phenomenon occurs more generally for any knot in S³ with an essential Conway sphere. We also exhibit an infinite family of knots, each of which admits a nontrivial genus two mutant which shares the same total dimension of knot Floer homology, while being distinguished by knot Floer homology as a bigraded invariant. Additionally, the genus two mutation interchanges the [mathematical symbol]-graded knot Floer homology groups in [mathematical symbol]-gradings k and -k. This infinite family of examples supports a second conjecture, namely that the total rank of knot Floer homology is invariant under genus two mutation. / text
2

Slice ribbon conjecture, pretzel knots and mutation

Long, Ligang 06 November 2014 (has links)
In this paper we explore the slice-ribbon conjecture for some families of pretzel knots. Donaldson's diagonalization theorem provides a powerful obstruction to sliceness via the union of the double branched cover W of B⁴ over a slicing disk and a plumbing manifold P([capital gamma]). Donaldson's theorem classifies all slice 4-strand pretzel knots up to mutation. The correction term is another 3-manifold invariant defined by Ozsváth and Szabó. For a slice knot K the number of vanishing correction terms of Y[subscript K] is at least the square root of the order of H₁(Y[subscript K];Z). Donaldson's theorem and the correction term argument together give a strong condition for 5-strand pretzel knots to be slice. However, neither Donaldson's theorem nor the correction terms can distinguish 4-strand and 5-strand slice pretzel knots from their mutants. A version of the twisted Alexander polynomial proposed by Paul Kirk and Charles Livingston provides a feasible way to distinguish those 5-strand slice pretzel knots and their mutants; however the twisted Alexander polynomial fails on 4-strand slice pretzel knots. / text

Page generated in 0.0482 seconds