• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

KLF2/KLF4 Double Knock-out Mouse Embryos Show Cranial Bleeding with Endothelial Disruption of the Primary Head Vein

Curtis, Benjamin 02 August 2010 (has links)
Krüppel-like factors (KLFs) are a family of 3 Cys2/His2 zinc finger transcription factors with a diverse set of roles in cellular differentiation, cell cycle regulation, tumor suppression, erythropoiesis, angiogenesis, and other processes. During embryonic development, KLF2 has a role in vessel maturation. Adult conditional KLF4 knockout mouse embryos have thickened arterial intima follow vascular injury. Breeding KLF2+/- and KLF4+/- mice resulted in the generation of KLF2/KLF4 double knockout (DKO) embryos. KLF2/KLF4 DKO embryos died by E10.5 with cranial bleeding. Using immunohistochemistry, embryo whole-mounts were examined for differences in gross vascularization between wild-type (WT), KLF2-/- and KLF2/KLF4 (DKO embryonic day 9.5 (E9.5) embryos. No obvious gross capillary abnormalities were noted in E9.5 KLF2/KLF4 DKOs, although the posterior cardinal vein appeared to narrow rostral to caudal in KLF2-/- and KLF2/KLF4 DKO embryos. Light and electronic microscopy were employed to investigate potential structural and ultrastructural phenotypes in KLF2/KLF4 DKO embryos. Microscopy confirmed hemorrhaging near and endothelial breaks in the primary head vein (PHV) in E9.5 KLF2/KLF4 DKOs (n=8) and E10.5 KLF2-/-KLF4+/- embryos (n=1). Electron micrographs illustrated a disrupted endothelium in KLF2/KLF4 DKOs with endothelial cells having filopodia-like projections. Surprisingly, KLF2-/- embryos had the presence of wider medial PHV endothelial gaps compared to WT at the electron micrograph level. Density counts revealed a 15% reduction in midline cranial mesenchyme at the level of hemorrhaging in KLF2/KLF4 DKOs compared to KLF2-/- (n=3). An in-situ hybridization localized KLF2 RNA expression to the endothelium of the PHV. A quantitative reverse transcriptase polymerase chain reaction assay revealed that the eNOS expression is synergistically regulated by KLF2 and KLF4, as a shared downstream target. It is proposed that KLF2 and KLF4 share in the regulation of multiple gene targets, leading to early death by E10.5.

Page generated in 0.0396 seconds