• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NUMERICAL STUDY OF FLUID FLOW AND SOLIDIFICATION IN THE PRIMARY COOLING ZONE OF A CONTINUOUS CASTER

Saswot Thapa (13199484) 07 September 2022 (has links)
<p> Continuous Casting (CC) is an essential process in the steel industry to transform molten steel into solid product. This process begins with primary cooling (PC) where the molten steel is cooled, and the initial solidification begins. It is important to monitor the process of PC as defects such as thinning of the shell in the mold can lead to breakouts. Key parameters in PC are the mold design, casting condition, and steel composition. In the research conducted, key parameters for PC are investigated to analyze the impact on flow formation and solidification. To optimize mold design, angular taper to the narrow face can be employed to accommodate for any shell shrinkage. Utilizing computational fluid dynamics, a range of mold taper is simulated per the developed solidification model with defined temperature-dependent material properties. When simulated without a taper, significant air gap formation in the corners of the mold is visible due to thermal shrinkage of the shell. This air gap decreases the cooling rate due to the shell’s lack of contact with the cooling mold wall. A parametric study of mold taper ranging from no taper to 3° as well as change in casting conditions, superheat and casting speed, are conducted to analyze the impact of taper with respect to the casting conditions. Per the conditions applied, angular taper between 1° and 2° resulted into reduction of undercooling and overcooling in the corner of the mold which is subjected to cooling from the broad face and narrow face of the cool mold wall. The turbulent flow in the mold region was found to drastically influences the quality of steel produced during continuous casting. The flow itself can lead to surface defects or slag entrainment based on the formation. A high surface wave due to turbulence of the injected melt lead to fluctuations and the instability compromised the quality of the steel produced as well as entrained the slag. To regulate the flow, electromagnetic forces can be applied in the mold, dampening the local turbulent flow. As the electrically conductive molten steel interacts with the induced magnetic field, it reduced the velocity of the steel jet released from the ports of the submerged entry nozzle. Per the simulation-based study conducted increasing the EMBr strength from 2975G to 4350G reduced the peak surface wave height by 59.47% and volume of flux rate of decrease by 4.25%. Additionally, increasing the SEN depth from 110 mm to 350 mm increased the average wave height by 19% and volume of flux rate of decrease by 2.6%. Lastly, increasing the mold width from 1.067 m to 1.50m increased average wave height by 8.71% and volume of flux rate of decrease by 0.9%. </p>
2

Numerical study of solidification and thermal-mechanical behaviors in a continuous caster

John Lawrence Resa (9749204) 16 December 2020 (has links)
This work includes the development of computational fluid dynamic (CFD) and finite element analysis (FEA) models to investigate fluid flow , solidification, and stress in the shell within the mold during continuous casting. The flow and solidification simulation is validated using breakout shell measurements provided by an industrial collaborator. The shell can be obtained by the solidification model and used in a FEA stress model. The stress model was validated by former research related to stress within a solidifying body presented by Koric and Thomas. The work also includes the application of these two models with a transient solidification model and a carbon percentage investigation on both solidification and deformation.

Page generated in 0.0864 seconds