Spelling suggestions: "subject:"aprincipal component 2analysis"" "subject:"aprincipal component 3analysis""
171 |
Behavioural Syndromes: Implications for Electrocommunication in a Weakly Electric Fish SpeciesShank, Isabelle January 2013 (has links)
Behavioural syndromes, defined as suites of correlated behaviours across different contexts, are used to characterize individual variability in behaviours. Males of the weakly electric fish species, Apteronotus leptorhynchus, produce electro-communication signals called chirps. Chirps are thought to be involved in agonistic signalling, as their relative incidence increases during agonistic conspecific interactions. However, high levels of individual variability in aggression obscure the role of chirps in mediating aggression. Here, I tested the presence of an aggression-boldness behavioural syndrome, and then considered the implications such a syndrome would have on chirping behaviours. Behavioural tests in anti-predation, object novelty, feeding, conspecific intrusion and novel environment exploration contexts revealed a syndrome involving only object novelty and feeding. We found no correlation between chirping behaviour and the assessed behaviours. Our results demonstrate that chirps represent a more complex communication system than previously suggested.
|
172 |
Real-time Embedded Age and Gender Classification in Unconstrained VideoAzarmehr, Ramin January 2015 (has links)
Recently, automatic demographic classification has found its way into embedded applications such as targeted advertising in mobile devices, and in-car warning systems for elderly drivers. In this thesis, we present a complete framework for video-based gender classification and age estimation which can perform accurately on embedded systems in real-time and under unconstrained conditions. We propose a segmental dimensionality reduction technique utilizing Enhanced Discriminant Analysis (EDA) to minimize the memory and computational requirements, and enable the implementation of these classifiers for resource-limited embedded systems which otherwise is not achievable using existing resource-intensive approaches. On a multi-resolution feature vector we have achieved up to 99.5% compression ratio for training data storage, and a maximum performance of 20 frames per second on an embedded Android platform. Also, we introduce several novel improvements such as face alignment using the nose, and an illumination normalization method for unconstrained environments using bilateral filtering. These improvements could help to suppress the textural noise, normalize the skin color, and rectify the face localization errors. A non-linear Support Vector Machine (SVM) classifier along with a discriminative demography-based classification strategy is exploited to improve both accuracy and performance of classification. We have performed several cross-database evaluations on different controlled and uncontrolled databases to assess the generalization capability of the classifiers. Our experiments demonstrated competitive accuracies compared to the resource-demanding state-of-the-art approaches.
|
173 |
Automatic Recognition of Speech-Evoked Brainstem Responses to English VowelsSamimi, Hamed January 2015 (has links)
The objective of this study is to investigate automatic recognition of speech-evoked
auditory brainstem responses (speech-evoked ABR) to the five English vowels (/a/, /ae/, /ao (ɔ)/, /i/ and /u/). We used different automatic speech recognition methods to
discriminate between the responses to the vowels. The best recognition result was
obtained by applying principal component analysis (PCA) on the amplitudes of the first ten harmonic components of the envelope following response (based on spectral components at fundamental frequency and its harmonics) and of the frequency following response (based on spectral components in first formant region) and combining these two feature sets. With this combined feature set used as input to an artificial neural network, a recognition accuracy of 83.8% was achieved. This study could be extended to more complex stimuli to improve assessment of the auditory system for speech communication in hearing impaired individuals, and potentially help in the objective fitting of hearing aids.
|
174 |
The Influence of Dynamic Response Characteristics on Traumatic Brain InjuryPost, Andrew January 2013 (has links)
Research into traumatic brain injury (TBI) mechanisms is essential for the development of methods to prevent its occurrence. One of the most common ways to incur a TBI is from falls, especially for the young and very old. The purpose of this thesis was to investigate how the acceleration loading curves influenced the occurrence of different types of TBI, namely: epidural hematoma, subdural hematoma, subarachnoid hemorrhage, and contusion. This investigation was conducted in three parts. The first study conducted reconstructions of 20 TBI cases with varying outcomes using MADYMO, Hybrid III, and finite element methodologies. This study provided a dataset of threshold values for each of the TBI injuries measured in parameters of strain and stress. The results of this study indicated that using a combined reconstructive approach produces results which are in keeping with the literature for TBI. The second study examined how the characteristics of the loading curves which were produced from each reconstruction influenced the outcome using a principal components analysis. It was found that the duration of the event accounted for much of the variance in the results, followed with the acceleration components. Different curve characteristics also accounted for differing amounts of variance in each of the lesion types. Study 3 examined how the dynamic response of the impact influenced where in the brain a subdural hematoma (SDH) could occur. It was found that the largest magnitudes of acceleration produced SDH in the parietal lobe, and the lowest in the occipital lobe. Overall this thesis examined the mechanism of injury for TBI using a large dataset with methodologies which complement each other’s limitations. As a result in depth information of the nature of TBI was attained and information provided which may be used to improve future protection and standard development.
|
175 |
[en] A STUDY OF CLASSIFIERS FOR AUTOMATIC FACE RECOGNITION / [pt] ESTUDO DE CLASSIFICADORES PARA O RECONHECIMENTO AUTOMÁTICO DE FACES04 November 2005 (has links)
[pt] Identificar um indivíduo a partir de uma imagem de face é
uma tarefa simples para seres humanos e extremamente
difícil para a Visão Computacional. Esta questão tem
motivado diversos grupos de pesquisa em todo o mundo,
especialmente a partir de 1993. Inúmeros trabalhos
realizados até o momento encaram uma imagem digital de n
pixels como um vetor num espaço n-dimensional, onde n é em
geral muito grande. Imagens de rostos humanos possuem,
contudo, grande redundância: todas contém dois olhos, um
nariz, uma boca, e etc. É possível, portanto, trabalhar em
uma base deste espaço em que faces possam ser
adequadamente caracterizadas a partir de um conjunto de p
componentes, onde p é muito menor quen. É com este enfoque
que o presente trabalho estuda sistemas de reconhecimento
de faces que consistem de um estágio de redução de
dimensionalidade, realizado pela técnica de Análise de
Componentes Principais (PCA), seguido de um modelo
classificador. No estágio da PCA, as imagens de n pixels
são transformadas em vetores de p características a partir
de um conjunto de treinamento. Três classificadores
conhecidos na literatura são estudados: os classificadores
de distância (EUclideana e de Mahalanobis), a rede neural
de Funções Base Radiais (RBF), e o classificador de
Fisher. Este trabalho propõe, ainda, um novo classificador
que introduz o conceito de Matrizes de Covariança
Misturadas (MPM) no classificador gaussiano de Máxima
Probabilidade. Os quatros classificadores são avaliados
através da variação de seus respectivos parâmetros e
utilizam como imagens o banco de faces da Olivetti. Nos
experimentos realizados para comparar tais abordagens, o
novo classificador proposto atingiu as maiores taxas de
reconhecimento e apresentou menorsensibilidade à escolha
do conjunto de faces de treinamento. / [en] Identifying an individual based on a face image is a
simple task for humans to perform and a very difficult one
for Vision Computing. Since 1993, several research groups
in all over the world have been studied this problem. Most
of the methods proposed for recognizing the identity of an
individual represent a n intensity pixel image as a n-
dimensional vector, when, in general, n is a very large
number value. Face images are highly redundant, since
every individual has two eyes, one nose, one mouth and so
on. Then, instead of using n intensity values, it is
generally possible to characterize an image instance by a
set of p features, for p < < n. This work studies face
recognition systems consisting of a PCA stage for
dimensionality reduction followed by a classifier. The PCA
stage takes the n-pixels face images and produces the
corresponding p most expensive features, based on the
whole available training set. Three classifiers proposed
in the literature are studied: the Euclidean and
Mahalanobis distances, the RBF neural network, and the
Fisher classifier. This work also proposes a new
classifier, which introduces the concept of Mixture
Covariance Matrices (MPM) in the Minimum Total Probality
of Misclassification rule for normal populations. The four
classifiers are evaluated using the Olivetti Face Database
varying their parameters in a wide range. In the
experiments carried out to compare those approaches the
new proposed classifier reached the best recognition rates
and showed to be less sensitive to the choice of the
training set.
|
176 |
Optimal Sampling Designs for Functional Data AnalysisJanuary 2020 (has links)
abstract: Functional regression models are widely considered in practice. To precisely understand an underlying functional mechanism, a good sampling schedule for collecting informative functional data is necessary, especially when data collection is limited. However, scarce research has been conducted on the optimal sampling schedule design for the functional regression model so far. To address this design issue, efficient approaches are proposed for generating the best sampling plan in the functional regression setting. First, three optimal experimental designs are considered under a function-on-function linear model: the schedule that maximizes the relative efficiency for recovering the predictor function, the schedule that maximizes the relative efficiency for predicting the response function, and the schedule that maximizes the mixture of the relative efficiencies of both the predictor and response functions. The obtained sampling plan allows a precise recovery of the predictor function and a precise prediction of the response function. The proposed approach can also be reduced to identify the optimal sampling plan for the problem with a scalar-on-function linear regression model. In addition, the optimality criterion on predicting a scalar response using a functional predictor is derived when the quadratic relationship between these two variables is present, and proofs of important properties of the derived optimality criterion are also provided. To find such designs, an algorithm that is comparably fast, and can generate nearly optimal designs is proposed. As the optimality criterion includes quantities that must be estimated from prior knowledge (e.g., a pilot study), the effectiveness of the suggested optimal design highly depends on the quality of the estimates. However, in many situations, the estimates are unreliable; thus, a bootstrap aggregating (bagging) approach is employed for enhancing the quality of estimates and for finding sampling schedules stable to the misspecification of estimates. Through case studies, it is demonstrated that the proposed designs outperform other designs in terms of accurately predicting the response and recovering the predictor. It is also proposed that bagging-enhanced design generates a more robust sampling design under the misspecification of estimated quantities. / Dissertation/Thesis / Doctoral Dissertation Statistics 2020
|
177 |
Functional interrelations of governance elements and their effects on tropical deforestation - combining qualitative and quantitative approachesFischer, Richard 20 November 2020 (has links)
No description available.
|
178 |
Možnosti využití metod vícerozměrné statistické analýzy dat při hodnocení spolehlivosti distribučních sítí / Possibilities of using multi - dimensional statistical analyses methods when evaluating reliability of distribution networksGeschwinder, Lukáš January 2009 (has links)
The aim of this study is evaluation of using multi-dimensional statistical analyses methods as a tool for simulations of reliability of distribution network. Prefered methods are a cluster analysis (CLU) and a principal component analysis (PCA). CLU is used for a division of objects on the basis of their signs and a calculation of the distance between objects into groups whose characteristics should be similar. The readout can reveal a secret structure in data. PCA is used for a location of a structure in signs of multi-dimensional matrix data. Signs present separate quantities describing the given object. PCA uses a dissolution of a primary matrix data to structural and noise matrix data. It concerns the transformation of primary matrix data into new grid system of principal components. New conversion data are called a score. Principal components generating orthogonal system of new position. Distribution network from the aspect of reliability can be characterized by a number of new statistical quantities. Reliability indicators might be: interruption numbers, interruption time. Integral reliability indicators might be: system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI). In conclusion, there is a comparison of performed SAIFI simulation according to negatively binomial division and provided values from a distribution company. It is performed a test at description of sign dependences and outlet divisions.
|
179 |
Klasifikace srdečních cyklů / Heart beat classificationPotočňák, Tomáš January 2013 (has links)
The aim of this work was to develop the method for classification of ECG beats into two classes, namely ischemic and non-ischemic beats. Heart beats (P-QRS-T cycles) selected from animals orthogonal ECGs were preprocessed and used as the input signals. Spectral features vectors (values of cross spectral coherency), principal component and HRV parameters were derived from the beats. The beats were classified using feedforward multilayer neural network designed in Matlab. Classification performance reached the value approx. from 87,2 to 100%. Presented results can be suitable in future studies aimed at automatic classification of ECG.
|
180 |
Automatické rozměření vícesvodových EKG signálů / Automatic Delineation of Multi-lead ECG SignalsVeverka, Vojtěch January 2017 (has links)
This semester thesis is focused on automated measurement of ECG signal. The theoretical part describes the rise and options ECG signal. Furthermore, the issue is staged principal components analysis, whose output is used as input signal for seasons. They describe the basic methods used in measurement to ECG signal. The practical part is designed in measurement algorithm for ECG signal that has been tested on basic CSE database. The results are discussed in the conclusion.
|
Page generated in 0.0732 seconds