Spelling suggestions: "subject:"prionlike proteins"" "subject:"axionlike proteins""
1 |
The potential role of the multivalent ionic compound PolyP in the assembly of the liquid nature in the cellMatta, Lara Michel 11 1900 (has links)
Les protéines de type prion, contenant des Séquences en acides aminés de Faible
Complexité (SFC), ont tendance à s’agréger et à former des compartiments non-membranaires
dans la cellule. Ces derniers ont des propriétés physiques communes à celles des liquides,
telles que la capacité de mouiller les surfaces, de s’écouler et de fusionner avec d’autres corps
liquides. Dans cette étude, nous avons démontré que la protéine Hrp1 forme, in vitro, des
gouttes de différentes tailles via une transition de phase liquide à liquide, et ce, uniquement
lorsqu’elle est exposée à un milieu chargé négativement. Exclusivement dans ce même milieu,
nous avons aussi observé que le domaine SFC de Hrp1 s’assemble et forme une matière de
type gel. Sur la base de ces observations, nous avons émis l’hypothèse que la tendance des
systèmes moléculaires à former des compartiments liquides in vivo peut être influencée par la
présence, dans le cytosol, de polyélectrolytes chargés négativement tels que l'ADN, l'ARN et
les polyphosphates (PolyP). En utilisant la levure comme modèle cellulaire et des techniques
de microscopie à fluorescence, nous nous sommes focalisés sur l’étude du rôle des PolyP dans
l'assemblage des P-bodies. Les P-bodies ont été choisis comme système moléculaire de
référence in vivo, étant des corps qui, après une transition de phase, se trouvent dans le cytosol
sous forme de gouttes. Nous avons démontré que la déplétion du phosphate et la délétion du
gène vtc4, responsable de la synthèse des PolyP dans la levure, n’ont pas d’influence dans la
formation des P-bodies. Nous avons aussi remarqué que les PolyP et la protéine Edc3, une des
composantes principales des P-bodies, ne sont pas co-localisés dans la cellule. Cette étude
préliminaire nous suggère un manque de corrélation entre la formation des P-bodies et la
présence de PolyP dans la cellule. Cependant, pour confirmer nos observations, des
expériences complémentaires doivent être envisagées, en considérant d’autres composantes
des P-bodies, tel que Lsm4, ou en analysant, in vivo, les effets des PolyP sur d’autres systèmes
moléculaires de nature liquide. / Prion-like proteins containing Low Complexity Sequences (LCSs) have the propensity
to aggregate and form membrane-less compartments in the cell. These proteins form droplets
that have liquid features such as wetting, dripping and fusion. In this study, we demonstrated
that the prion domain-containing protein Hrp1 forms droplets of different sizes in the presence
of negatively charged polymers via liquid-liquid phase separation, whereas under the same
conditions, the prion-like domain PolyQ/N of Hrp1 forms a gel-like material. Based on these
findings, we hypothesize that droplets in vivo could be modulated by negatively charged
polyelectrolytes found in the cell such as DNA, RNA and polyphosphate (PolyP). My goal
was to examine the role of the polyanionic nature of PolyP on the assembly of P-bodies using
Saccharomyces cerevisiae as a cellular model and fluorescence microscopy. We chose to
study processing (P)- bodies, based on previous findings that these cellular subcompartments
are formed by liquid-liquid phase separation of component proteins in the cytoplasm. We
found that depleting phosphate from the media and deleting vtc4 gene, which is responsible
for PolyP synthesis, did not have any effect on P-body formation. In addition, we
demonstrated that PolyP and the protein Edc3, a core component of P-bodies, do not colocalize.
Our data suggest that PolyP does not affect P-body formation. However, further and
complementary studies have to be performed to confirm that PolyP have no effects on other
membrane-less organelles.
|
2 |
Molecular and cellular mechanism of α-synuclein assemblies transfer between neuronal cells : role of Tunneling nanotubes / Mécanismes moléculaire et cellulaire du transfert des assemblages de la protéine α-synucléine entre cellules neuronales : rôle des Tunneling nanotubesAbounit, Saïda 04 May 2015 (has links)
Les synucléionopathies représentent un groupe de maladies neuro-dégénératives incurables du système nerveux central. Elles regroupent entre autres la maladie de Parkinson, l’atrophie multi-systématisée et la maladie à corps de Lewy. Toutes ces maladies se caractérisent par un déclin progressif des fonctions motrices, cognitives, comportementales et autonomiques. La mal-conformation et l’agrégation de la protéine α-synuclein qui forme des inclusions intraneuronales sont des éléments communs à toutes les synucleinopathies. Ces inclusions portent le nom de corps de Lewy et se forment dans des neurones ou cellules gliales appartenant à des régions cérébrales spécifiques. Elles sont vraisemblablement à l’origine de la perte progressive de neurones dans certaines parties du cerveau. Dans le cas de la maladie de Parkinson et dans d’autres maladies neuro-dégénératives, il a été démontré que la pathologie se propage anatomiquement d’une manière spécifique et prévisible au niveau cérébrale. Ceci suggère donc que la progression de la maladie est étroitement liée au transfert des agrégats d’α-synucléine. Ce procédé est très similaire à celui impliqué dans la maladie du prion qui elle en revanche est infectieuse. Par ailleurs, des inclusions neuronales d’α-synucléine ont été identifiées dans des neurones dopaminergiques d’origine fœtaux qui avaient été transplanté dans des cerveaux de patients parkinsoniens. Cette étude a permis d’envisager pour la première fois la possibilité de la transmission d’inclusions d’α-synucléine entre les neurones. Bien que de nombreuses études aient démontré la propagation d’α-synucléine in vitro et in vivo, le mécanisme permettant ce transfert n’est pas clairement établi. Par conséquent, ma thèse s’attache à étudier le mécanisme de transfert d’assemblages d’α-synucléine (i.e., oligomères et fibrilles). Dans un premier temps, j’ai apporté la preuve que les assemblages d’α-synucléine transfèrent de manière efficace entre les cellules neuronales via les Tunneling nanotubes (TNT). Les TNT sont définis comme étant des ponts membranaires riches en F-actine et permettant de connecter physiquement le cytoplasme de cellules éloignées. Au niveau subcellulaire, j’ai démontré que les assemblages d’α-synucléine qui transfèrent se trouvent dans des lysosomes. En revanche, après le transfert, ces assemblages se retrouvent libres dans le cytoplasme. J’ai également mis en évidence qu’à la suite du transfert, permis par les TNT, les fibrilles d’α-synucléine sont capables de recruter et d’induire l’agrégation de l’α-synucléine soluble afin de perpétuer le processus d’agrégation à l’infinie. Ces résultats indiquent que les TNT peuvent représenter un moyen efficace permettant le transfert d’assemblages d’α-synucléine. Cette découverte offre de nouvelles opportunités pour le développement de nouveaux agents neuro-protectifs contre la propagation des synucléinopathies. / Synucleinopathies are a group of fatal neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, characterized by a chronic and progressive decline in motor, cognitive, behavioral, and autonomic functions. The hallmark of these diseases is the misfolding and aggregation of α-synuclein protein accumulating into intracellular inclusions Lewy bodies in neurons and glial cells which leads to the loss of neurons in specific brain regions. In the case of Parkinson’s disease and other neurodegenerative diseases, the pathology was shown to progress throughout the brain in a specific and predictable manner suggesting that the progression of the diseases is linked to the transfer of aggregated α-synuclein that is reminiscent of prion diseases that are infectious. Importantly, upon transplantation of fetal dopaminergic neurons in the brain of Parkinson’s patients, neuronal inclusions were found in the grafted neurons strongly suggesting that α-synuclein inclusions could transmit between neurons. While several studies showed α-synuclein propagation in vitro and in vivo the mechanism of intercellular transfer remains elusive. The aim of my thesis was to study the mechanism of transfer of α-synuclein assemblies (i.e., oligomers and fibrils) involved in Parkinson’s pathogenesis. I evidenced that α-synuclein assemblies transferred efficiently via tunneling nanotubes (TNT), F-actin based membranous bridges connecting the cytoplasm of remote cells. I demonstrated that, at the sub-cellular level, the transferred α-synuclein assemblies were specifically confined in lysosomes and that upon transfer a large amount of α-synuclein was found free in the cytosol of acceptor cells. Finally, I showed that after TNT-mediated transfer α-synuclein fibrils recruited and seeded the aggregation of the soluble α-synuclein protein in order to perpetuate aggregation. The identification of TNT as an efficient means of α-synuclein transfer opens new avenues to the development of novel therapies targeting the spreading into the brain of amyloidogenic proteins involved in neurodegenerative diseases.
|
Page generated in 0.0881 seconds