• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting and Estimating Execution Time of Manual Test Cases - A Case Study in Railway Domain

Ameerjan, Sharvathul Hasan January 2017 (has links)
Testing plays a vital role in the software development life cycle by verifying and validating the software's quality. Since software testing is considered as an expensive activity and due to thelimitations of budget and resources, it is necessary to know the execution time of the test cases for an efficient planning of test-related activities such as test scheduling, prioritizing test cases and monitoring the test progress. In this thesis, an approach is proposed to predict and estimate the execution time of manual test cases written in English natural language. The method uses test specifications and historical data that are available from previously executed test cases. Our approach works by obtaining timing information from each and every step of previously executed test cases. The collected data is used to estimate the execution time for non-executed test cases by mapping them using text from their test specifications. Using natural language processing, texts are extracted from the test specification document and mapped with the obtained timing information. After estimating the time from this mapping, a linear regression analysis is used to predict the execution time of non-executed test cases. A case study has been conducted in Bombardier Transportation (BT) where the proposed method is implemented and the results are validated. The obtained results show that the predicted execution time of studied test cases are close to their actual execution time.

Page generated in 0.1041 seconds