Spelling suggestions: "subject:"probabilistic cellular automata"" "subject:"probabilistic cellular utomata""
1 |
Increasing Coupling of Probabilistic Cellular AutomataLouis, Pierre-Yves January 2004 (has links)
We give a necessary and sufficient condition for the existence of an increasing coupling of N (N >= 2) synchronous dynamics on S-Zd (PCA). Increasing means the coupling preserves stochastic ordering. We first present our main construction theorem in the case where S is totally ordered; applications to attractive PCAs are given. When S is only partially ordered, we show on two examples that a coupling of more than two synchronous dynamics may not exist. We also prove an extension of our main result for a particular class of partially ordered spaces.
|
2 |
Probabilistic cellular automata and competition across tropic levelsPilling, Mark Andrew January 2001 (has links)
This thesis investigates a resource driven probabilistic cellular automata (PCA) model of plant competition in terms of local interactions, spatial distributions, and invasion. The model also incorporates herbivores and carnivores and examines their effect on plant populations and community structure. Comparisons are drawn between the model, field studies and other mathematical models. Chapter 1 provides a background of relevant concepts from plants and animal ecology, details a number of mathematical models used in this field and describes the model relevant models and results in the literature. It concludes with a comparison of the features of the most germane models and field studies. Chapter 2 primarily focuses on plants, argues for the model we have chosen, recaptures previous results which are similar to some natural phenomena, and makes a preliminary investigation of community behaviour and disturbance. It then describes the effect of introducing biomass for plants on species behaviour, and their spatial distributions. Chapter 3 deals with competition between different species, and aspects of invasion. Coexistence between functionally different plants can occur, join count statistics and measures for patch location on the torus are developed and applied. Chapter 4 derives a generalised probabilistic model for ruderal monocultures, finds numerical solutions for these and investigates models for vegetatively growing species of plants. Chapter 5 examines the population effects of herbivory (i.e. importance of spatial correlation of disturbance) and analogies to competitor-stress tolerator-ruderal (CSR) primary plant types, as well as plant successional rates and factors affecting community composition. Equilibrium species composition corresponded to CSR theory when plant immigration was introduced. Chapter 6 investigates the basic effects of carnivory, and discusses parallels between probabilistic cellular automata and field studies.
|
3 |
Coupling, space and time Mixing for parallel stochastic dynamicsLouis, Pierre-Yves January 2004 (has links)
We first introduce some coupling of a finite number of Probabilistic Cellular
Automata dynamics (PCA), preserving the stochastic ordering. Using this tool, for a general attractive probabilistic cellular automata on SZd, where S is finite, we prove that a condition (A) is equivalent to the (time-) convergence towards equilibrium of this Markovian parallel dynamics, in the uniform norm, exponentially fast. This condition (A) means the exponential decay of the influence from the boundary for the invariant measures of the system restricted to finite ‘box’-volume. For a class of reversible PCA dynamics on {−1, +1}Zd / with a naturally associated Gibbsian potential ϕ, we prove that a Weak Mixing condition for ϕ implies the validity of the assumption (A); thus the ‘exponential ergodicity’ of the dynamics towards the unique Gibbs measure associated to ϕ holds. On some particular examples of this PCA class, we verify that our assumption (A) is weaker than the Dobrushin-Vasershtein ergodicity condition. For some special PCA, the ‘exponential ergodicity’ holds as soon as there is no phase transition.
|
4 |
Increasing coupling for probabilistic cellular automataLouis, Pierre-Yves January 2005 (has links)
We give a necessary and sufficient condition for the existence of an increasing coupling of N (N >= 2) synchronous dynamics on S-Zd (PCA). Increasing means the coupling preserves stochastic ordering. We first present our main construction theorem in the case where S is totally ordered; applications to attractive PCAs are given. When S is only partially ordered, we show on two examples that a coupling of more than two synchronous dynamics may not exist. We also prove an extension of our main result for a particular class of partially ordered spaces.
|
5 |
Ergodicity of PCA : equivalence between spatial and temporal mixing conditionsLouis, Pierre-Yves January 2004 (has links)
For a general attractive Probabilistic Cellular Automata on S-Zd, we prove that the (time-) convergence towards equilibrium of this Markovian parallel dynamics, exponentially fast in the uniform norm, is equivalent to a condition (A). This condition means the exponential decay of the influence from the boundary for the invariant measures of the system restricted to finite boxes. For a class of reversible PCA dynamics on {1,+1}(Zd), wit a naturally associated Gibbsian potential rho, we prove that a (spatial-) weak mixing condition (WM) for rho implies the validity of the assumption (A); thus exponential (time-) ergodicity of these dynamics towards the unique Gibbs measure associated to rho hods. On some particular examples we state that exponential ergodicity holds as soon as there is no phase transition.
|
6 |
Modelagem e controle de propagação de epidemias usando autômatos celulares e teoria de jogos. / Modelling and control of disease propagation using cellular automata and game theory.Schimit, Pedro Henrique Triguis 20 July 2010 (has links)
Estuda-se o espalhamento de doenças contagiosas utilizando modelos suscetível-infectado-recuperado (SIR) representados por equações diferenciais ordinárias (EDOs) e por autômatos celulares probabilistas (ACPs) conectados por redes aleatórias. Cada indivíduo (célula) do reticulado do ACP sofre a influência de outros, sendo que a probabilidade de ocorrer interação com os mais próximos é maior. Efetuam-se simulações para investigar como a propagação da doença é afetada pela topologia de acoplamento da população. Comparam-se os resultados numéricos obtidos com o modelo baseado em ACPs aleatoriamente conectados com os resultados obtidos com o modelo descrito por EDOs. Conclui-se que considerar a estrutura topológica da população pode dificultar a caracterização da doença, a partir da observação da evolução temporal do número de infectados. Conclui-se também que isolar alguns infectados causa o mesmo efeito do que isolar muitos suscetíveis. Além disso, analisa-se uma estratégia de vacinação com base em teoria dos jogos. Nesse jogo, o governo tenta minimizar os gastos para controlar a epidemia. Como resultado, o governo realiza campanhas quase-periódicas de vacinação. / The spreading of contagious diseases is studied by using susceptible-infected-recovered (SIR) models represented by ordinary differential equations (ODE) and by probabilistic cellular automata (PCA) connected by random networks. Each individual (cell) of the PCA lattice experiences the influence of others, where the probability of occurring interaction with the nearest ones is higher. Simulations for investigating how the disease propagation is affected by the coupling topology of the population are performed. The numerical results obtained with the model based on randomly connected PCA are compared to the results obtained with the model described by ODE. It is concluded that considering the topological structure of the population can pose difficulties for characterizing the disease, from the observation of the time evolution of the number of infected individuals. It is also concluded that isolating a few infected subjects can cause the same effect than isolating many susceptible individuals. Furthermore, a vaccination strategy based on game theory is analyzed. In this game, the government tries to minimize the expenses for controlling the epidemic. As consequence, the government implements quasi-periodic vaccination campaigns.
|
7 |
Modelagem e controle de propagação de epidemias usando autômatos celulares e teoria de jogos. / Modelling and control of disease propagation using cellular automata and game theory.Pedro Henrique Triguis Schimit 20 July 2010 (has links)
Estuda-se o espalhamento de doenças contagiosas utilizando modelos suscetível-infectado-recuperado (SIR) representados por equações diferenciais ordinárias (EDOs) e por autômatos celulares probabilistas (ACPs) conectados por redes aleatórias. Cada indivíduo (célula) do reticulado do ACP sofre a influência de outros, sendo que a probabilidade de ocorrer interação com os mais próximos é maior. Efetuam-se simulações para investigar como a propagação da doença é afetada pela topologia de acoplamento da população. Comparam-se os resultados numéricos obtidos com o modelo baseado em ACPs aleatoriamente conectados com os resultados obtidos com o modelo descrito por EDOs. Conclui-se que considerar a estrutura topológica da população pode dificultar a caracterização da doença, a partir da observação da evolução temporal do número de infectados. Conclui-se também que isolar alguns infectados causa o mesmo efeito do que isolar muitos suscetíveis. Além disso, analisa-se uma estratégia de vacinação com base em teoria dos jogos. Nesse jogo, o governo tenta minimizar os gastos para controlar a epidemia. Como resultado, o governo realiza campanhas quase-periódicas de vacinação. / The spreading of contagious diseases is studied by using susceptible-infected-recovered (SIR) models represented by ordinary differential equations (ODE) and by probabilistic cellular automata (PCA) connected by random networks. Each individual (cell) of the PCA lattice experiences the influence of others, where the probability of occurring interaction with the nearest ones is higher. Simulations for investigating how the disease propagation is affected by the coupling topology of the population are performed. The numerical results obtained with the model based on randomly connected PCA are compared to the results obtained with the model described by ODE. It is concluded that considering the topological structure of the population can pose difficulties for characterizing the disease, from the observation of the time evolution of the number of infected individuals. It is also concluded that isolating a few infected subjects can cause the same effect than isolating many susceptible individuals. Furthermore, a vaccination strategy based on game theory is analyzed. In this game, the government tries to minimize the expenses for controlling the epidemic. As consequence, the government implements quasi-periodic vaccination campaigns.
|
Page generated in 0.0645 seconds