• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complexidade descritiva de classes de complexidade probabilísticas de tempo polinomial e das classes ⊕P e NP∩coNP através de lógicas com quantificadores de segunda ordem / Descriptive complexity of polynomial time probabilistic complexity classes and classes ⊕P and NP∩coNP through second order generalized quantifiers

Rocha, Thiago Alves January 2014 (has links)
ROCHA, Thiago Alves. Complexidade descritiva de classes de complexidade probabilísticas de tempo polinomial e das classes ⊕P e NP∩coNP através de lógicas com quantificadores de segunda ordem. 2014. 81 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2014. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-12T18:02:32Z No. of bitstreams: 1 2014_dis_tarocha.pdf: 600184 bytes, checksum: 8e317715dd15118a1061361a5251f08e (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-22T12:36:28Z (GMT) No. of bitstreams: 1 2014_dis_tarocha.pdf: 600184 bytes, checksum: 8e317715dd15118a1061361a5251f08e (MD5) / Made available in DSpace on 2016-07-22T12:36:28Z (GMT). No. of bitstreams: 1 2014_dis_tarocha.pdf: 600184 bytes, checksum: 8e317715dd15118a1061361a5251f08e (MD5) Previous issue date: 2014 / Many computable problems can be solved more efficiently or in a more natural way through probabilistic algorithms, which shows that the use of such algorithms is quite relevant in Computer Science. However, probabilistic algorithms may return a wrong answer with a certain probability. Also, the use of probabilistic algorithms does not solve problems that are not computable. In Computational Complexity, the complexity of a problem is characterized based on the amount of computational resources, such as space and time, needed to solve it. Problems that have the same complexity compose the same class. The computational complexity classes are related by a hierarchy. In Descriptive Complexity, a logic is used to express problems and capture computational complexity classes in order to express all and only the problems of this class. Thus, the complexity of a problem does not depend on physical factors, such as time and space, but only on the expressiveness of the logic that defines it. Important results of the area states that several classes of computational complexity can be characterized by a logic. For example, the class NP has been shown equivalent to the class of problems expressed by the existential fragment of Second-Order Logic. This close relationship between these areas allows some results about Logics to be transferred to Computational Complexity and vice versa. Despite of the importance of probabilistic algorithms and of Descriptive Complexity, there are few results on the characterization, by a logic, of probabilistic computational complexity classes. In this work, we show characterizations for each of the polinomial time probabilistic complexity classes. In our results, we use second-order generalized quantifiers to simulate the acceptance of the nondeterministic machines of these classes. We found Logical characterizations in the literature only for classes PP and BPP. In the first case, the logic employed was the first-order added by a quantifier most of second-order. With the approach established in this work, we obtain an alternative proof for the characterization of PP. With the same methodology, we also characterize the class ⊕P through a logic with a second-order parity quantifier. In the case of BPP , there was a result that used a logic with probabilistic semantics. Using our approach of generalized quantifiers, we obtain an alternative characterization for this class. With the same method, we were able to characterize the probabilistic semantic classes RP, coRP, ZPP and the semantic class NP ∩ coNP. Finally, we show an application of Descriptive Complexity results in the creation of algorithms from a logic specification. / Vários problemas computáveis podem ser resolvidos de maneira mais eficiente ou mais natural através de algoritmos probabilísticos, o que mostra que o uso de tais algoritmos é bastante relevante em computação. Entretanto, os algoritmos probabilísticos podem retornar uma resposta errada com uma certa probabilidade. Observe, ainda que o uso de algoritmos probabilísticos não resolve problemas não computáveis. A Complexidade Computacional caracteriza a complexidade de um problema a partir da quantidade de recursos computacionais, como espaço e tempo, para resolvê-lo. Problemas que tem a mesma complexidade compõem uma classe. As classes de complexidade computacional são relacionadas através de uma hierarquia. A Complexidade Descritiva usa lógicas para expressar os problemas e capturar classes de complexidade computacional no sentido de expressar todos, e apenas, os problemas desta classe. Dessa forma, a complexidade de um problema não depende de fatores físicos, como tempo e espaço, mas apenas da expressividade da lógica que o define. Resultados importantes da área mostraram que várias classes de complexidade computacional podem ser caracterizadas por lógicas. Por exemplo, a classe NP foi mostrada equivalente à classe dos problemas expressos pelo fragmento existencial da Lógica de Segunda Ordem. Este estreito relacionamento entre tais áreas permite que alguns resultados da área de Lógica sejam transferidos para a de Complexidade Computacional e vice-versa. Apesar da importância de algoritmos probabilísticos e da Complexidade Descritiva, existem poucos resultados de caracterização, por lógicas, das classes de complexidade computacional probabilísticas. Neste trabalho, buscamos mostrar caracterizações para cada uma das classes de complexidade probabilísticas de tempo polinomial. Nos nossos resultados, utilizamos quantificadores generalizados de segunda ordem para simular a aceitação das máquinas não-determinísticas dessas classes. Achamos caracterizações lógicas na literatura apenas para as classes PP e BPP. No primeiro caso, a lógica utilizada era a de primeira ordem adicionada de um quantificador maioria de segunda ordem. Com a abordagem criada neste trabalho, conseguimos obter uma prova alternativa para a caracterização de PP. Com essa mesma metodologia, também conseguimos caracterizar a classe ⊕P através de uma lógica com um quantificador de paridade. No caso de BPP, existia um resultado que utilizava uma lógica com semântica probabilística. Usando nossa abordagem de quantificadores generalizados, conseguimos obter uma caracterização alternativa para essa classe. Com o mesmo método, conseguimos caracterizar as classes probabilísticas semânticas RP, coRP, ZPP e a classe semântica NP∩coNP. Por fim, mostramos uma aplicação dos resultados de Complexidade Descritiva na criação de algoritmos através de uma especificação lógica.
2

Complexidade Descritiva de Classes de Complexidade ProbabilÃsticas de Tempo Polinomial e das Classes ⊕P e NP∩coNP AtravÃs de LÃgicas com Quantificadores de Segunda Ordem / Descriptive Complexity of Polynomial Time Probabilistic Complexity Classes and Classes ⊕P and NP∩coNP Through Second Order Generalized Quantifiers

Thiago Alves Rocha 24 February 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / VÃrios problemas computÃveis podem ser resolvidos de maneira mais eficiente ou mais natural atravÃs de algoritmos probabilÃsticos, o que mostra que o uso de tais algoritmos à bastante relevante em computaÃÃo. Entretanto, os algoritmos probabilÃsticos podem retornar uma resposta errada com uma certa probabilidade. Observe, ainda que o uso de algoritmos probabilÃsticos nÃo resolve problemas nÃo computÃveis. A Complexidade Computacional caracteriza a complexidade de um problema a partir da quantidade de recursos computacionais, como espaÃo e tempo, para resolvÃ-lo. Problemas que tem a mesma complexidade compÃem uma classe. As classes de complexidade computacional sÃo relacionadas atravÃs de uma hierarquia. A Complexidade Descritiva usa lÃgicas para expressar os problemas e capturar classes de complexidade computacional no sentido de expressar todos, e apenas, os problemas desta classe. Dessa forma, a complexidade de um problema nÃo depende de fatores fÃsicos, como tempo e espaÃo, mas apenas da expressividade da lÃgica que o define. Resultados importantes da Ãrea mostraram que vÃrias classes de complexidade computacional podem ser caracterizadas por lÃgicas. Por exemplo, a classe NP foi mostrada equivalente à classe dos problemas expressos pelo fragmento existencial da LÃgica de Segunda Ordem. Este estreito relacionamento entre tais Ãreas permite que alguns resultados da Ãrea de LÃgica sejam transferidos para a de Complexidade Computacional e vice-versa. Apesar da importÃncia de algoritmos probabilÃsticos e da Complexidade Descritiva, existem poucos resultados de caracterizaÃÃo, por lÃgicas, das classes de complexidade computacional probabilÃsticas. Neste trabalho, buscamos mostrar caracterizaÃÃes para cada uma das classes de complexidade probabilÃsticas de tempo polinomial. Nos nossos resultados, utilizamos quantificadores generalizados de segunda ordem para simular a aceitaÃÃo das mÃquinas nÃo-determinÃsticas dessas classes. Achamos caracterizaÃÃes lÃgicas na literatura apenas para as classes PP e BPP. No primeiro caso, a lÃgica utilizada era a de primeira ordem adicionada de um quantificador maioria de segunda ordem. Com a abordagem criada neste trabalho, conseguimos obter uma prova alternativa para a caracterizaÃÃo de PP. Com essa mesma metodologia, tambÃm conseguimos caracterizar a classe ⊕P atravÃs de uma lÃgica com um quantificador de paridade. No caso de BPP, existia um resultado que utilizava uma lÃgica com semÃntica probabilÃstica. Usando nossa abordagem de quantificadores generalizados, conseguimos obter uma caracterizaÃÃo alternativa para essa classe. Com o mesmo mÃtodo, conseguimos caracterizar as classes probabilÃsticas semÃnticas RP, coRP, ZPP e a classe semÃntica NP∩coNP. Por fim, mostramos uma aplicaÃÃo dos resultados de Complexidade Descritiva na criaÃÃo de algoritmos atravÃs de uma especificaÃÃo lÃgica. / Many computable problems can be solved more efficiently or in a more natural way through probabilistic algorithms, which shows that the use of such algorithms is quite relevant in Computer Science. However, probabilistic algorithms may return a wrong answer with a certain probability. Also, the use of probabilistic algorithms does not solve problems that are not computable. In Computational Complexity, the complexity of a problem is characterized based on the amount of computational resources, such as space and time, needed to solve it. Problems that have the same complexity compose the same class. The computational complexity classes are related by a hierarchy. In Descriptive Complexity, a logic is used to express problems and capture computational complexity classes in order to express all and only the problems of this class. Thus, the complexity of a problem does not depend on physical factors, such as time and space, but only on the expressiveness of the logic that defines it. Important results of the area states that several classes of computational complexity can be characterized by a logic. For example, the class NP has been shown equivalent to the class of problems expressed by the existential fragment of Second-Order Logic. This close relationship between these areas allows some results about Logics to be transferred to Computational Complexity and vice versa. Despite of the importance of probabilistic algorithms and of Descriptive Complexity, there are few results on the characterization, by a logic, of probabilistic computational complexity classes. In this work, we show characterizations for each of the polinomial time probabilistic complexity classes. In our results, we use second-order generalized quantifiers to simulate the acceptance of the nondeterministic machines of these classes. We found Logical characterizations in the literature only for classes PP and BPP. In the first case, the logic employed was the first-order added by a quantifier most of second-order. With the approach established in this work, we obtain an alternative proof for the characterization of PP. With the same methodology, we also characterize the class ⊕P through a logic with a second-order parity quantifier. In the case of BPP , there was a result that used a logic with probabilistic semantics. Using our approach of generalized quantifiers, we obtain an alternative characterization for this class. With the same method, we were able to characterize the probabilistic semantic classes RP, coRP, ZPP and the semantic class NP ∩ coNP. Finally, we show an application of Descriptive Complexity results in the creation of algorithms from a logic specification.

Page generated in 0.0638 seconds