Spelling suggestions: "subject:"probabilistic decline curve"" "subject:"probabilistic decline kurve""
1 |
Using Decline Curve Analysis, Volumetric Analysis, and Bayesian Methodology to Quantify Uncertainty in Shale Gas Reserve EstimatesGonzalez Jimenez, Raul 1988- 14 March 2013 (has links)
Probabilistic decline curve analysis (PDCA) methods have been developed to quantify uncertainty in production forecasts and reserves estimates. However, the application of PDCA in shale gas reservoirs is relatively new. Limited work has been done on the performance of PDCA methods when the available production data are limited. In addition, PDCA methods have often been coupled with Arp’s equations, which might not be the optimum decline curve analysis model (DCA) to use, as new DCA models for shale reservoirs have been developed. Also, decline curve methods are based on production data only and do not by themselves incorporate other types of information, such as volumetric data. My research objective was to integrate volumetric information with PDCA methods and DCA models to reliably quantify the uncertainty in production forecasts from hydraulically fractured horizontal shale gas wells, regardless of the stage of depletion.
In this work, hindcasts of multiple DCA models coupled to different probabilistic methods were performed to determine the reliability of the probabilistic DCA methods. In a hindcast, only a portion of the historical data is matched; predictions are made for the remainder of the historical period and compared to the actual historical production. Most of the DCA models were well calibrated visually when used with an appropriate probabilistic method, regardless of the amount of production data available to match. Volumetric assessments, used as prior information, were incorporated to further enhance the calibration of production forecasts and reserves estimates when using the Markov Chain Monte Carlo (MCMC) as the PDCA method and the logistic growth DCA model.
The proposed combination of the MCMC PDCA method, the logistic growth DCA model, and use of volumetric data provides an integrated procedure to reliably quantify the uncertainty in production forecasts and reserves estimates in shale gas reservoirs. Reliable quantification of uncertainty should yield more reliable expected values of reserves estimates, as well as more reliable assessment of upside and downside potential. This can be particularly valuable early in the development of a play, because decisions regarding continued development are based to a large degree on production forecasts and reserves estimates for early wells in the play.
|
2 |
Assessment of Eagle Ford Shale Oil and Gas ResourcesGong, Xinglai 16 December 2013 (has links)
The Eagle Ford play in south Texas is currently one of the hottest plays in the United States. In 2012, the average Eagle Ford rig count (269 rigs) was 15% of the total US rig count. Assessment of the oil and gas resources and their associated uncertainties in the early stages is critical for optimal development. The objectives of my research were to develop a probabilistic methodology that can reliably quantify the reserves and resources uncertainties in unconventional oil and gas plays, and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources.
I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves and resources uncertainties in unconventional oil and gas plays. I then divided the Eagle Ford play from the Sligo Shelf Margin to the San Macros Arch into 8 different production regions based on fluid type, performance and geology. I used a combination of the Duong model switching to the Arps model with b = 0.3 at the minimum decline rate to model the linear flow to boundary-dominated flow behavior often observed in shale plays. Cumulative production after 20 years predicted from Monte Carlo simulation combined with reservoir simulation was used as prior information in the Bayesian decline-curve methodology. Probabilistic type decline curves for oil and gas were then generated for all production regions. The wells were aggregated probabilistically within each production region and arithmetically between production regions. The total oil reserves and resources range from a P_(90) of 5.3 to P_(10) of 28.7 billion barrels of oil (BBO), with a P_(50) of 11.7 BBO; the total gas reserves and resources range from a P_(90) of 53.4 to P_(10) of 313.5 trillion cubic feet (TCF), with a P_(50) of 121.7 TCF. These reserves and resources estimates are much higher than the U.S. Energy Information Administration’s 2011 recoverable resource estimates of 3.35 BBO and 21 TCF. The results of this study provide a critical update on the reserves and resources estimates and their associated uncertainties for the Eagle Ford shale formation of South Texas.
|
Page generated in 0.0638 seconds