• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COMPARING THE RISK OF THE PRESSURE TUBE-SCWR TO THE CANDU USING PROBABILISTIC RISK ASSESSMENT TOOLS

ITUEN, IMA 04 1900 (has links)
<p>In the next few decades, the nuclear industry worldwide is expected to launch a set of reactors with advanced reactor designs. Generation-IV (GEN-IV) reactors are to display superior safety by incorporating additional passive safety concepts as well as improving accident management and minimization of consequences. Canada is in the early stages of conceiving its GEN-IV reactor design – the Supercritical Water Reactor (SCWR). The proposed design is based on the existing CANDU configurations and is expected to offer significant advances in thermal efficiency, fuel cycle sustainability, and relative cost of energy. Of particular interest is the reactor's ability to use inherent or passive safety concepts which will translate to the reactor being walk-away safe in an accident.</p> <p>Steam generators in CANDU remove decay heat by thermosyphoning in a loss of Class-IV power accident. This natural circulation process was a passive feature in GEN-II and GEN-III CANDUs. The SCWR's direct thermodynamic cycle implies steam generators are no longer incorporated into the design. This thesis examines how the SCWR compensates for the removal of a passive safety system element and the difference to the overall safety of the reactor following accidents. These results will be compared to the traditional CANDU's response in accidents to demonstrate the added value of this new reactor in maintaining the goal of no widespread core damage. Comparisons were also made between the SCWR and similar GEN-IV reactors in terms of design and response to various initiating events.</p> <p>Probabilistic Risk Analysis is used in this thesis to assess the SCWR design options. Although the SCWR is in the pre-conceptual design phase, the results of such risk assessment studies could affect the design, operation, and licensing of this new reactor. Future studies can build on this work to conduct more detailed analyses to characterise the SCWR's safety and reliability.</p> / Master of Applied Science (MASc)

Page generated in 0.4546 seconds