Spelling suggestions: "subject:"probabilistic verification"" "subject:"probabilistica verification""
1 |
Quantitative Modeling and Verification of Evolving SoftwareGetir Yaman, Sinem 15 September 2021 (has links)
Mit der steigenden Nachfrage nach Innovationen spielt Software in verschiedenenWirtschaftsbereichen
eine wichtige Rolle, wie z.B. in der Automobilindustrie, bei intelligenten Systemen als auch bei Kommunikationssystemen. Daher ist die
Qualität für die Softwareentwicklung von großer Bedeutung.
Allerdings ändern sich die probabilistische Modelle (die Qualitätsbewertungsmodelle)
angesichts der dynamischen Natur moderner Softwaresysteme. Dies führt dazu,
dass ihre Übergangswahrscheinlichkeiten im Laufe der Zeit schwanken, welches zu
erheblichen Problemen führt.
Dahingehend werden probabilistische
Modelle im Hinblick auf ihre Laufzeit kontinuierlich aktualisiert. Eine fortdauernde
Neubewertung komplexer Wahrscheinlichkeitsmodelle ist jedoch teuer. In
letzter Zeit haben sich inkrementelle Ansätze als vielversprechend für die Verifikation
von adaptiven Systemen erwiesen. Trotzdem wurden bei der Bewertung struktureller
Änderungen im Modell noch keine wesentlichen Verbesserungen erzielt. Wahrscheinlichkeitssysteme
werden als Automaten modelliert, wie
bei Markov-Modellen. Solche Modelle können in
Matrixform dargestellt werden, um die Gleichungen basierend auf Zuständen und
Übergangswahrscheinlichkeiten zu lösen.
Laufzeitmodelle wie Matrizen sind nicht signifikant,
um die Auswirkungen von Modellveränderungen erkennen zu können.
In dieser Arbeit wird ein Framework unter Verwendung stochastischer Bäume mit
regulären Ausdrücken entwickelt, welches modular aufgebaut ist und eine aktionshaltige
sowie probabilistische Logik im Kontext der Modellprüfung aufweist. Ein solches
modulares Framework ermöglicht dem Menschen die Entwicklung der Änderungsoperationen
für die inkrementelle Berechnung lokaler Änderungen, die im Modell auftreten
können. Darüber hinaus werden probabilistische Änderungsmuster beschrieben,
um eine effiziente inkrementelle Verifizierung, unter Verwendung von Bäumen mit regulären
Ausdrücken, anwenden zu können. Durch die Bewertung der Ergebnisse wird
der Vorgang abgeschlossen. / Software plays an innovative role in many different domains, such as car industry, autonomous
and smart systems, and communication. Hence, the quality of the software
is of utmost importance and needs to be properly addressed during software evolution.
Several approaches have been developed to evaluate systems’ quality attributes, such
as reliability, safety, and performance of software. Due to the dynamic nature of modern software systems, probabilistic models representing the quality of the software and their transition probabilities change over time and fluctuate, leading to a significant problem that needs to be solved to obtain correct evaluation results of quantitative
properties. Probabilistic models need to be continually updated at run-time to
solve this issue. However, continuous re-evaluation of complex probabilistic models is
expensive. Recently, incremental approaches have been found to be promising for the
verification of evolving and self-adaptive systems. Nevertheless, substantial improvements
have not yet been achieved for evaluating structural changes in the model.
Probabilistic systems are usually
represented in a matrix form to solve the equations
based on states and transition probabilities. On the other side, evolutionary changes can create
various effects on theese models and force them to re-verify the whole system. Run-time
models, such as matrices or graph representations, lack the expressiveness to identify
the change effect on the model.
In this thesis, we develop a framework using stochastic regular expression trees,
which are modular, with action-based probabilistic logic in the model checking context.
Such a modular framework enables us to develop change operations for the incremental
computation of local changes that can occur in the model. Furthermore, we describe
probabilistic change patterns to apply efficient incremental quantitative verification using
stochastic regular expression trees and evaluate our results.
|
Page generated in 0.144 seconds