• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards the Pedagogy of Risk: Teaching and Learning Risk in the Context of Secondary Mathematics

Radakovic, Nenad 01 April 2014 (has links)
A qualitative case study was presented in order to explore an inquiry-based learning approach to teaching risk in two different grade 11 mathematics classes in an urban centre in Canada. The first class was in an all-boys independent school (23 boys) and the second class was in a publicly funded religious school (19 girls and 4 boys). The students were given an initial assessment in which they were asked about the safety of nuclear power plants and their knowledge of the Fukushima nuclear power plant accident. Following the initial assessment, the students participated in an activity with the purpose of determining the empirical probability of a nuclear power plant accident based on the authentic data found online. The second activity was then presented in order to determine the impact of a nuclear power plant accident and compare it to a coal power plant accident. The findings provide evidence that the students possess intuitive knowledge that risk of an event should be assessed by both its likelihood and its impact. The study confirms the Levinson et al. (2012) pedagogic model of risk in which individuals’ values and prior experiences together with representations and judgments of probability play a role in the estimation of risk. The study also expands on this model by suggesting that pedagogy of risk should include five components, namely: 1) knowledge, beliefs, and values, 2) judgment of impact, 3) judgment of probability, 4) representations, and 5) estimation of risk. These ii components do not necessarily appear in the instruction or students’ decision making in a chronological order; furthermore, they influence each other. For example, judgments about impact (deciding not to consider accidents with low impact into calculations) may influence the judgments about probability. The implication for mathematics education is that a meaningful instruction about risk should go beyond mathematical representations and reasoning and include other components of the pedagogy of risk. The study also illustrates the importance of reasoning about rational numbers (rates, ratios, and fractions) and their critical interpretation in the pedagogy of risk. Finally, the curricular expectations relevant to the pedagogy of risk from the Ontario secondary curriculum are identified.
2

Towards the Pedagogy of Risk: Teaching and Learning Risk in the Context of Secondary Mathematics

Radakovic, Nenad 01 April 2014 (has links)
A qualitative case study was presented in order to explore an inquiry-based learning approach to teaching risk in two different grade 11 mathematics classes in an urban centre in Canada. The first class was in an all-boys independent school (23 boys) and the second class was in a publicly funded religious school (19 girls and 4 boys). The students were given an initial assessment in which they were asked about the safety of nuclear power plants and their knowledge of the Fukushima nuclear power plant accident. Following the initial assessment, the students participated in an activity with the purpose of determining the empirical probability of a nuclear power plant accident based on the authentic data found online. The second activity was then presented in order to determine the impact of a nuclear power plant accident and compare it to a coal power plant accident. The findings provide evidence that the students possess intuitive knowledge that risk of an event should be assessed by both its likelihood and its impact. The study confirms the Levinson et al. (2012) pedagogic model of risk in which individuals’ values and prior experiences together with representations and judgments of probability play a role in the estimation of risk. The study also expands on this model by suggesting that pedagogy of risk should include five components, namely: 1) knowledge, beliefs, and values, 2) judgment of impact, 3) judgment of probability, 4) representations, and 5) estimation of risk. These ii components do not necessarily appear in the instruction or students’ decision making in a chronological order; furthermore, they influence each other. For example, judgments about impact (deciding not to consider accidents with low impact into calculations) may influence the judgments about probability. The implication for mathematics education is that a meaningful instruction about risk should go beyond mathematical representations and reasoning and include other components of the pedagogy of risk. The study also illustrates the importance of reasoning about rational numbers (rates, ratios, and fractions) and their critical interpretation in the pedagogy of risk. Finally, the curricular expectations relevant to the pedagogy of risk from the Ontario secondary curriculum are identified.

Page generated in 0.3866 seconds