• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel Data-based Stochastic Distribution Control for Non-Gaussian Stochastic Systems

Zhang, Qichun, Wang, H. 06 April 2021 (has links)
Yes / This note presents a novel data-based approach to investigate the non-Gaussian stochastic distribution control problem. As the motivation of this note, the existing methods have been summarised regarding to the drawbacks, for example, neural network weights training for unknown stochastic distribution and so on. To overcome these disadvantages, a new transformation for dynamic probability density function is given by kernel density estimation using interpolation. Based upon this transformation, a representative model has been developed while the stochastic distribution control problem has been transformed into an optimisation problem. Then, data-based direct optimisation and identification-based indirect optimisation have been proposed. In addition, the convergences of the presented algorithms are analysed and the effectiveness of these algorithms has been evaluated by numerical examples. In summary, the contributions of this note are as follows: 1) a new data-based probability density function transformation is given; 2) the optimisation algorithms are given based on the presented model; and 3) a new research framework is demonstrated as the potential extensions to the existing st

Page generated in 0.125 seconds