Spelling suggestions: "subject:"probit ordenada"" "subject:"probit coordenado""
11 |
What characteristics influence the future performance of the investment funds of shares in Brazil? / Quais caracterÃsticas influenciam a performance futura dos fundos de investimento de aÃÃes no Brasil?Igor Macedo de Lucena 16 January 2014 (has links)
nÃo hà / Segundo Jensen (1968), a indÃstria de fundos mÃtuos de investimento, cuja expansÃo està prevista teoricamente pelo Teorema da SeparaÃÃo enunciado em Sharpe (1964), teria limitaÃÃes no sentido de bater o mercado em termos de performance risco-retorno mensurada pelo alfa de Jensen. Nesta ampla discussÃo, esta dissertaÃÃo se posiciona em sugerir um exercÃcio empÃrico aplicado a um cross-section contendo 243 fundos de investimentos em aÃÃes, categoria Ibovespa Ativo, o qual visa identificar que variÃveis financeiras, contÃbeis e administrativas se mostram capazes de prever no ano seguinte o sinal e a significÃncia do alfa de Jensen. Foram extraÃdos retornos diÃrios para todos os fundos nos anos de 2011 e 2012, e calculadas mÃtricas clÃssicas de retorno, risco e performance, bem como os 24 balancetes mensais e informaÃÃes administrativas do perÃodo em questÃo. Metodologicamente, as variÃveis explicativas consistem em estatÃsticas descritivas obtidas a partir de dados financeiros diÃrios e contÃbeis mensais, enquanto as performances a serem modeladas sÃo estimadas por meio do Capital Asset Pricing Model (CAPM). Dessa maneira, foi possÃvel ordenar os fundos em trÃs grupos, composto por Loosers, Draw e Winners, de acordo com suas performances em relaÃÃo ao Ãndice Ibovespa. Sendo assim, foi identificado que apenas 71 dos fundos foram capazes de performar melhor que o Ãndice Ibovespa durante o ano de 2012. Os resultados obtidos com a estimaÃÃo do arcabouÃo de Probit ordenado sugerem que fundos com maiores performances mensuradas pelos alfa de Jensen e Ãndices de Calmar e Sortino, associados a menores taxas de administraÃÃo, tendem a bater o mercado no ano seguinte. Entretanto, mÃtricas clÃssicas como desvio-padrÃo, taxa de performance e Ãndice de Sharpe (1964) nÃo se mostraram significantes. O modelo sugere, tambÃm, que a variÃvel Drawdown seja apresentada como mÃtrica eficiente de mensuraÃÃo de risco. / According to Jensen (1968), the mutual funds industry expansion is theoretically predicted by the Separation Theorem stated by Sharpe (1964), however with limitations in order to exceed the market in terms of risk-return performance measured by Jensen's alpha. In this broad discussion, this dissertation suggest an empirical exercise applied to a cross-section containing 243 stock funds, within the Ibovespa Active category, which aims to identify which financial, accounting and administrative variables are capable to predict the next year's value and the significance of the Jensen's alpha. Daily returns were extracted for all funds in 2011 and 2012, and were calculated classic metrics such as return, risk and performance. There were also extracted 24 monthly accounting balances and administrative informations for the period in question. Methodologically, the explanatory variables consist of descriptive statistics obtained from daily financial data and monthly accounting data, while the performances to be modeled are estimated using the Capital Asset Pricing Model (CAPM). Using this technic it was possible divide the funds into three groups, consisting of Loosers, Draw and Winners, according to their performances in relation to the Ibovespa index. Thus, it was discovered that only 71 funds were able to perform better than the Ibovespa Index during the year 2012. The estimation results of the ordered probit framework suggests that funds with higher performances measured by the Jensen's Alpha and with higher Sortino and Calmar ratios, associated with lower management fees tend to surpass the market in the next year. However, classical metrics like standard deviation, performance fees and Sharpe ratio (1964) were not significant. The model also suggests that the drawdown variable should be used as an efficient risk metric.
|
Page generated in 0.0509 seconds