Spelling suggestions: "subject:"problèmes aux limites none linéaire"" "subject:"problèmes aux limites noun linéaire""
1 |
Analyse et contrôle de quelques problèmes d'interaction fluide-structures / Analysis and Control of Some Problems of Fluid-Structures InteractionLiu, Yuning 14 November 2011 (has links)
Dans cette thèse, on s'intéresse au caractère bien posé et à la contrôlabilité de quelques systèmes d'interaction fluide-structure. Plus précisément, on considère le système constitué de structures déformables ou indéformables et d'un fluide visqueux incompressible. On suppose que le fluide satisfait les équations non linéaires de Navier-Stokes en dimension 2 ou 3 et de Burgers visqueux en dimension 1. Les équations du mouvement des structures sont obtenues en minimisant une énergie du système (principe de D'Alembert) ou en appliquant le principe fondamental de la dynamique (lois de Newton). Les principaux résultats de cette thèse concernent l?existence des solutions (faibles ou fortes) dans le cas déformable, et la contrôlabilité à zéro dans le cas indéformable / In this thesis, we consider the well-posedness and controllability of some systems of fluid-structure interaction. More precisely, we consider the system consisted of deformable or non-deformable structure and of a viscous incompressible fluid. We suppose that the fluid satisfy the Navier-Stokes equation in 2 or 3 dimensions and the viscous Burger equation in 1-d. The equations for the structures are obtained by minimizing certain energy of the system (D?Alembert principle) or by applying the fundamental principle of dynamics (Newton?s laws). The principal results of this thesis are: the existence of solutions (strong or weak) in the deformable case and the null-controllability in the non-deformable case
|
2 |
Interactions d’ondes et de bordMarcou, Alice 17 June 2011 (has links)
Tout d'abord, des ondes de surface, solutions de problèmes aux limites hyperboliques non linéaires, sont étudiées : on construit une solution BKW sous forme de développement infini en puissance de epsilon. On le justifie rigoureusement, en construisant une solution exacte, qui admet ce développement asymptotique. On montre que la solution n'est pas nécessairement purement localisée sur la frontière, même lorsque le terme source l'est ; l'exemple d'un cas particulier de l'élasticité est traité. Ensuite, on étudie la réflexion d'ondes non linéaires discontinues, pour des problèmes aux limites hyperboliques, faiblement bien posés, ni fortement stables, ni fortement instables. On étudie comment les singularités d'une solution striée sont réfléchies lorsque la solution atteint la frontière. On prouve des estimations striées et en normes infinies. On montre qu'une discontinuité du gradient de la solution à travers un hyperplan peut être réfléchie en une discontinuité de la solution elle-même. / We first study surface waves, solutions of hyperbolic nonlinear boundary value problems. We construct BKW solutions in the weakly nonlinear regime with infinite expansion in powers of ε. We rigorously justify this expansion,constructing exact solutions, which admit the asymptotic expansions. We also show that the solution is not necessarily localized at the order O(ε∞) in the interior, even if the data are ; a particular case of elasticity is studied: we prove that fast oscillatory elastic surface waves can produce non trivial internal non oscillatory displacements.Afterwards, we study the reflection of non linear discontinuous waves, for weakly well-posed hyperbolic boundary value problems, satisfying the (WR) condition, which has been introduced in [1, 12], that is in a case where the IBVP is neither strongly stable, nor strongly unstable. We study how the singularities of a striated solution are reflected when the solution hits the boundary. We prove striated estimates and L∞ estimates and observe the loss of one derivative: we show that a discontinuityof the gradient of the solution across an hyperplane can be reflected in a discontinuity across an hyperplane of the solution itself.
|
Page generated in 0.1045 seconds