• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coloração de Arestas em Grafos Split-Comparabilidade / Edge coloring in split-comparability graphs

Cruz, Jadder Bismarck de Sousa 02 May 2017 (has links)
Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-10-09T16:26:41Z No. of bitstreams: 1 CRUZ_Jadder_2017.pdf: 1326879 bytes, checksum: 61ee3c40e293d26085a939c0a0290716 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-10-09T16:26:55Z (GMT) No. of bitstreams: 1 CRUZ_Jadder_2017.pdf: 1326879 bytes, checksum: 61ee3c40e293d26085a939c0a0290716 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-10-09T16:27:03Z (GMT) No. of bitstreams: 1 CRUZ_Jadder_2017.pdf: 1326879 bytes, checksum: 61ee3c40e293d26085a939c0a0290716 (MD5) / Made available in DSpace on 2017-10-09T16:27:11Z (GMT). No. of bitstreams: 1 CRUZ_Jadder_2017.pdf: 1326879 bytes, checksum: 61ee3c40e293d26085a939c0a0290716 (MD5) Previous issue date: 2017-05-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Let G = (V, E) be a simple and undirected graph. An edge-coloring is an assignment of colors to the edges of the graph such that any two adjacent edges receive different colors. The chromatic index of a graph G is the smallest number of colors such that G has an edge-coloring. Clearly, a lower bound for the chromatic index is the degree of the vertex of higher degree, denoted by ?(G). In 1964, Vizing proved that chromatic index is ?(G) or ?(G) + 1. The Classification Problem is to determine if the chromatic index is ?(G) (Class 1 ) or if it is ?(G) + 1 (Class 2 ). Let n be number of vertices of a graph G and let m be its number of edges. We say G is overfull if m > (n-1) 2 ?(G). Every overfull graph is Class 2. A graph is subgraph-overfull if it has a subgraph with same maximum degree and it is overfull. It is well-known that every overfull and subgraph-overfull graph is Class 2. The Overfull Conjecture asserts that every graph with ?(G) > n 3 is Class 2 if and only if it is subgraph-overfull. In this work we prove the Overfull Conjecture to a particular class of graphs, known as split-comparability graphs. The Overfull Conjecture was open to this class. / Dado um grafo simples e não direcionado G = (V, E), uma coloração de arestas é uma função que atribui cores às arestas do grafo tal que todas as arestas que incidem em um mesmo vértice têm cores distintas. O índice cromático é o número mínimo de cores para obter uma coloração própria das arestas de um grafo. Um limite inferior para o índice cromático é, claramente, o grau do vértice de maior grau, denotado por ?(G). Em 1964, Vizing provou que o índice cromático ou é ?(G) ou ?(G) + 1, surgindo assim o Problema da Classificação, que consiste em determinar se o índice cromático é ?(G) (Classe 1 ) ou ?(G) + 1 (Classe 2 ). Seja n o número de vértices de um grafo G e m seu número de arestas. Dizemos que um grafo é sobrecarregado se m > (n-1) 2 ?(G). Um grafo é subgrafo-sobrecarregado se tem um subgrafo de mesmo grau máximo que é sobrecarregado. É sabido que se um grafo é sobrecarregado ou subgrafo-sobrecarregado ele é necessariamente Classe 2. A Conjectura Overfull é uma famosa conjectura de coloração de arestas e diz que um grafo com ?(G) > n 3 é Classe 2 se e somente se é subgrafo-sobrecarregado. Neste trabalho provamos a Conjectura Overfull para uma classe de grafos, a classe dos grafos split-comparabilidade. Até este momento a Conjectura Overfull estava aberta para esta classe.

Page generated in 0.0533 seconds