• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aprendizagem ativa em sistemas de filtragem colaborativa

SAMPAIO, Igor Azevedo January 2006 (has links)
Made available in DSpace on 2014-06-12T15:59:37Z (GMT). No. of bitstreams: 2 arquivo5346_1.pdf: 1776923 bytes, checksum: f744986693684a54ed4294ce35659f25 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Nos dias de hoje, a quantidade de informação disponível é muito maior do que nossa capacidade de tratá-la. Vemos-nos diante de centenas de canais de televisão, dezenas de filmes para ver e milhares de produtos nas lojas de comércio eletrônico. Quando precisamos tomar uma decisão e não conhecemos todas as alternativas possíveis, uma abordagem bastante freqüente é buscar a recomendação de outras pessoas. Na década de 1990 surgiram sistemas computacionais capazes de automatizar o processo de recomendações. Em geral os Sistemas de Recomendação, como ficaram conhecidos, coletam indicadores das preferências dos usuários para fornecer-lhes uma visão personalizada da informação. Uma abordagem amplamente empregada nos Sistemas de Recomendação é a Filtragem Colaborativa (FC), em que a produção das sugestões é feita com base na similaridade entre usuários. Assim, para prever a relevância que um item i terá para um usuário alvo u, o sistema se baseia nas opiniões dos usuários com preferências similares às de u sobre i. Um problema freqüente nos Sistemas de Recomendação diz respeito à chegada de um novo usuário. Nessa situação, o sistema não conhece nada a respeito das preferências dele e também não é capaz de gerar-lhe recomendações. Nos sistemas que utilizam FC isto também ocorre, pois a similaridade entre os usuários é computada com base nos itens que eles avaliaram em comum. Para amenizar esse problema, uma solução é que haja uma etapa inicial na utilização do sistema em que sejam apresentados alguns itens para o usuário novato avaliar. No entanto isso precisa ser feito de maneira eficiente, para que o sistema adquira o máximo de informação com um mínimo de esforço do usuário. O paradigma de aprendizagem em que o algoritmo controla os exemplos utilizados no treinamento para otimizar o processo é chamado de aprendizagem ativa. A aplicação dessa técnica para melhorar o processo de aquisição das preferências do usuário em sistemas de FC tem sido alvo de vários estudos. Em um deles foi proposto o método ActiveCP que combinava a controvérsia e da popularidade de um item para determinar a ordem em que seriam apresentados para serem avaliados pelo usuário. O método apresentou bons resultados experimentais. Neste trabalho, é investigada a utilização de uma nova medida de controvérsia capaz de resolver várias das restrições presentes na metodologia originalmente proposta no ActiveCP. É também apresentada uma nova metodologia, mais simples, com uma melhor aplicabilidade prática e que mantém os ganhos de informação na aquisição das preferências dos usuários obtidos pelo método original. Finalmente, a nova metodologia é avaliada em uma base de usuários com avaliações de filmes que simula a base de dados de um sistema em início de operação

Page generated in 0.0883 seconds