Spelling suggestions: "subject:"canprocess desimulations"" "subject:"canprocess bysimulations""
1 |
Six Sigma management. Action research with some contributions to theories and methods.Cronemyr, Peter January 2007 (has links)
Many companies around the world have implemented Six Sigma as a problem solving methodology especially useful for dealing with recurring problems in business processes. Since the 1980s when it was developed at Motorola, many companies have tried to implement Six Sigma to fit their own company’s culture and goals. This thesis presents a longitudinal case study describing the evolution of ‘Six Sigma Management’ at Siemens in Sweden. The success of the programme was to a large degree built on previous failures, confirming Juran’s old saying ‘Failure is a gold mine’. From the case study, success factors for implementing Six Sigma at Siemens are identified and compared to those given in the literature. Some of the most critical success factors identified at Siemens had not been mentioned as such in the literature before. The main conclusion of the study is that, in order to succeed and get sustainable results from a Six Sigma programme, Six Sigma should be integrated with Process Management, instead of just running Six Sigma as a separate initiative in an organisation. Furthermore, the thesis includes papers presenting methods and tools to be used in a Six Sigma programme or in Six Sigma projects. They deal with: how to identify suitable Six Sigma projects, how to select which Six Sigma methodology to use, how to find hidden misunderstandings between people from different knowledge domains, and how to simulate the impact of improvements to iterative processes. All these methods and tools have been developed and tested at Siemens. This has been an action research project, where the author has been employed by the company under investigation for eleven years and has actively influenced the changes in the company based on knowledge gained at the company as well as on research studies conducted at universities. In action research the change initiative under investigation is conducted and analysed in a single context. The readers are invited to draw their own conclusions on the applicability of the results to their own specific cases. In addition to this, some conclusions derived using analytical generalisation, applicable to a more general case, are presented in the thesis. / <p>Defended att Chalmers University of Technolgy in 2007.</p>
|
2 |
Syngas and Hydrogen Production Enhancement Strategies in Chemical Looping SystemsNadgouda, Sourabh Gangadhar January 2019 (has links)
No description available.
|
3 |
Pores to Process: The In Silico Study of Metal-Organic Frameworks from Crystal Structure to Industrial Pressure Swing Adsorption for Postcombustion Carbon Capture and StorageBurns, Thomas D. 17 May 2022 (has links)
This thesis explores the use of computational chemistry and machine learning techniques to aid in the design of Metal-Organic Frameworks (MOFs) for use in postcombustion carbon capture and storage (PoC-CCS). PoC-CCS is an ongoing field of research which aims to selectively remove carbon dioxide, an important greenhouse gas, from the exhaust of fossil-fuel burning powerplants. By using a suite of advanced simulation techniques, high-throughput screenings were performed on thousands of MOFs to study their behaviour in a pressure swing adsorption (PSA) system. To develop a comprehensive picture of a material’s performance, the behaviour of individual gas molecules within the pores of the crystal structures to the material’s performance in industrial scale PSA columns was evaluated.
To study the behaviour of individual gas molecules within the pores of a MOF, a new algorithm which can accurately determine the locations of gas binding sites was developed. This algorithm, which relies on probability distributions generated through grand canonical Monte Carlo simulations (GCMC), was optimized for CO2 with the goal of use in high-throughput screening. By tuning the user-controlled parameters for a desired gas, this algorithm, which was named the Guest Atom Localization Algorithm (GALA), was shown to accurately reproduce experimentally determined binding sites while being run in a high-throughput manner with no user intervention.
Studying MOFs at the pore or crystal scale in this manner provides valuable insights into the behaviour of gases within the materials. A major shortcoming, however, is the lack of direct insight into the material’s behaviour in industrial systems. Materials scientists and MOF chemists have historically focused on a set of performance metrics measured at this scale; however, no clear connection can be made between such metrics and the performance of that sorbent material in a PSA column. To bridge this gap between MOF chemists and the process engineers studying the PSA systems, a large-scale screening of MOFs was performed using a sophisticated PSA simulator designed to reproduce the performance of an 80 kg PSA column. By supplying isotherms obtained using GCMC simulations to be used as inputs into the PSA simulator, a multi-scale high-throughput screening of MOFs for PoC-CCS was performed for the first time under coal-fired powerplant conditions.
This multi-scale screening provided the ideal conditions to study the materials science performance metrics and their relationships to industrial PSA performance. To study this relationship, a series of machine learning and artificial intelligence techniques were employed. The primary goal was to extract important relationships between the materials science and industrial PSA performance metrics, with a secondary goal of developing a predictive model which could be used to accelerate the pace of materials discovery. Through the use of machine learning, several metrics were identified which could be used to predict whether a material could meet the minimum target of 95 % purity of captured CO2, and 90 % removal (or recovery) of CO2 from the flue gas stream. Among them was the isotherm parameters for N2, the most abundant species in the flue gas. This finding was significant as to date the focus among MOF chemists studying the PoC-CCS system was placed primarily on the CO2 metrics, with N2 only implicitly considered when calculating the CO2/N2 selectivity. Although several metrics were identified which could predict the purity and recovery targets, none of the conventional metrics tested could be used to estimate the energetic cost of capture or the size of the capture plant, both important considerations in evaluating the cost of capture.
The relationship between N2 binding within the pores of the MOF and its ability to meet the purity-recovery targets was explored using GALA. Using a Tanimoto similarity metric and the ratio of single component and competitive loadings, the CO2 and N2 binding environments were studied. It was determined that when the N2 binding environment was significantly altered by the presence of CO2, the material was more likely to meet the purity-recovery targets. Further analysis found that this change in binding environments was correlated to a reduced N2 uptake in the presence of CO2, implying that the competition for binding sites within the pores of the MOF is an important indicator for the material’s ability to meet the purity-recovery target. For the first time, a direct relationship between the behaviour of individual gas molecules to industrial PSA performance can be reported.
Although the PSA simulator used throughout this work has proven to be a powerful tool for materials discovery, several shortcomings still exist. The first is the method used by the simulator to predict the loadings at various points within the column. This method relies on single component isotherm data despite the ability of GCMC to simulate multi-component isotherms. An alternative method to using single component isotherms was proposed which relies on multi-component isotherm data and a linear interpolation model. The existing method was compared to the new proposed interpolation method, and it was found that the loadings predicted using the interpolation method were more accurate. The second shortcoming of the PSA simulator is the computational expense associated with the optimizations. Using the PSA simulator, a single material may take up to a week to be fully optimized on a high-performance computing cluster. To increase the pace of materials discovery, a surrogate model was developed using the data accumulated over the course of the work presented in this thesis. Using artificial neural networks, a suite of models was developed which reproduces the outputs of the PSA simulator and is able to optimize a single MOF in a matter of minutes. This suite of models, known as the Fossil Fuel Combustion for Carbon Capture and Storage (FoCAS) was used to perform a screening of over 4,000 materials.
|
4 |
Exploring Strategies for Syngas Generation using Calcium-Iron based Oxygen Carriers in Chemical Looping SystemsShah, Vedant R. January 2021 (has links)
No description available.
|
5 |
Iron-Based Chemical Looping Gasification Technologies for Flexible Syngas Production from Fossil Fuels with Carbon-di-oxide Capture: Process Systems Simulations, Techno-Economic AnalysisKathe, Mandar V. 06 September 2016 (has links)
No description available.
|
Page generated in 0.1056 seconds