Spelling suggestions: "subject:"processo INAR(1)"" "subject:"orocesso INAR(1)""
1 |
Novos modelos para s?ries temporais de valores bin?rios e inteiros n?o negativos baseados em operadores thinning / New models for time series of binary values and non-negative integers based on thinning operatorsLopes, Tito L?vio da Cunha 28 November 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-04-03T22:46:24Z
No. of bitstreams: 1
TitoLivioDaCunhaLopes_DISSERT.pdf: 830141 bytes, checksum: a867c27dace025040774c75e8896b7e2 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-04-11T21:20:49Z (GMT) No. of bitstreams: 1
TitoLivioDaCunhaLopes_DISSERT.pdf: 830141 bytes, checksum: a867c27dace025040774c75e8896b7e2 (MD5) / Made available in DSpace on 2017-04-11T21:20:49Z (GMT). No. of bitstreams: 1
TitoLivioDaCunhaLopes_DISSERT.pdf: 830141 bytes, checksum: a867c27dace025040774c75e8896b7e2 (MD5)
Previous issue date: 2016-11-28 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq) / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / Modelos para s?ries temporais de valores inteiros t?m se destacado devido a vasta possibilidade de aplica??o. Modelos para controle estat?stico de processos, para dados econ?micos e, atualmente, para a sequ?ncia estrutural dos ?cidos desoxirribonucleicos (DNA), s?o exemplos de importantes aplica??es. Este trabalho est? dividido em dois cap?tulos independentes. A primeira parte do trabalho diz respeito a modelagem de dados bin?rios autocorrelacionados. Neste contexto, uma nova classe de modelos foi proposta, baseado em operadores thinning, denominada processo Bernoulli autorregressivo de ordem p[BeAr(p)] similar ao modelo cl?ssico AR(p). Em particular, o modelo BeAr(1) foi estudado e v?rias propriedades foram estabelecidas, tr?s m?todos de estima??o foram propostos para o modelo, inclusive foi estabelecida a distribui??o assint?tica dos estimadores pelo m?todo de m?nimos quadrados condicionais e os elementos da matriz de informa??o de Fisher. Al?m das simula??es, aplica??es foram feitas em
dados reais de precipita??o, ocasi?o em que os modelos BeAr(1) e BeAr(2) foram indicados para modelagem. Na segunda parte do trabalho, novos modelos foram estudados ao propor a fam?lia de distribui??es de s?ries de pot?ncia generalizada com par?metro inflador (IGPSD) para o processo de
inova??o do modelo INAR(1). As principais propriedades do processo foram estabelecidas, tais como a m?dia, vari?ncia, autocorrela??o e probabilidade de transi??o. Os m?todos de estima??o por Yule-Walker e m?xima verossimilhan?a condicional foram utilizados para estimar os par?metros dos modelos. Dois casos particulares do modelo INAR$(1)$ com inova??o IGPSD foram estudados, denominados de IPoINAR(1) e IGeoINAR(1). Por fim, na aplica??o a dados reais, observou-se um bom desempenho do novo modelo proposto. / Models for time series of integer values have stood out because of the vast possibility of
application. Models for statistical process control, for economic data and currently for
the structural sequence of deoxyribonucleic acids (DNA) are examples of important
applications. This work is divided into two independent parts. The first part of the
work concerns the modeling of autocorrelated binary data. In this context, a new class
of models has been proposed, based on thinning operators called Bernoulli autoregressive
process of order p [BeAr(p)] similar to the classical model AR(p). In particular,
BeAr(1) model was studied, various properties of three estimation methods have been
proposed for the model, including the asymptotic distribution of the estimators by the
conditional least squares method, and the elements of the Fisher information matrix.
In addition to the simulations, applications were made on real data of precipitation, at
which models BeAr(1) and BeAr(2) were given to modeling. In the second part of the
work, new models were studied to propose the family of inflated-parameter generalized
power series distributions (IGPSD) to the innovation process INAR(1) model. The
main properties of the process have been established, such as the mean, variance, autocorrelation
and transition probability. The estimation methods for Yule-Walker and
conditional maximum likelihood were used to estimate the parameters of the models.
Two particular cases of model INAR(1) with IGPSD innovation process were studied,
called IPoINAR(1) and IGeoINAR(1). Applications to real data showed a good performance
of the new model proposed.
|
Page generated in 0.0529 seconds