• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • Tagged with
  • 13
  • 13
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelo de sistema de partículas para a difusão de uma informação em / An interacting particle system model for information diffusion on Zd

Oliveira, Karina Bindandi Emboaba de 16 January 2015 (has links)
O propósito desta dissertação é combinar tópicos de percolação e processo de contato para formular e obter resultados em um modelo de sistema de partículas que é inspirado no fenômeno de difusão de uma inovação em uma população estruturada. Mais precisamente, propomos uma cadeia de Markov a tempo contínuo definida na rede hipercúbica d-dimensional. Cada indivíduo da população deve estar em algum dos três estados pertencentes ao conjunto {0; 1; 2}. Nesse modelo, 0 representa ignorante, 1 consciente e 2 adotador. Serão estudados argumentos que permitam encontrar condições suficientes nas quais a inovação se espalha ou não com probabilidade positiva. Isto envolve o estudo de modelos de percolação e do processo de contato. / The purpose of this work is to combine percolation and contact process topics to formulate and achieve results in a particle system model that is inspired by the diffusion phenomenon of an innovation in a structured population. More precisely, we proposed a continuous time Markov chain defined in a population represented by the d-dimensional integer lattice. Each agent of population may be in any of the three states belonging to the set {0; 1; 2}. In this model, 0 stands for ignorant, 1 for aware and 2 for adopter. The arguments, that allow to obtain sufficient conditions under which the innovation either becomes extinct or survives with positive probability, will be studied. This involves the study of percolation models and contact process.
12

Modelo de sistema de partículas para a difusão de uma informação em / An interacting particle system model for information diffusion on Zd

Karina Bindandi Emboaba de Oliveira 16 January 2015 (has links)
O propósito desta dissertação é combinar tópicos de percolação e processo de contato para formular e obter resultados em um modelo de sistema de partículas que é inspirado no fenômeno de difusão de uma inovação em uma população estruturada. Mais precisamente, propomos uma cadeia de Markov a tempo contínuo definida na rede hipercúbica d-dimensional. Cada indivíduo da população deve estar em algum dos três estados pertencentes ao conjunto {0; 1; 2}. Nesse modelo, 0 representa ignorante, 1 consciente e 2 adotador. Serão estudados argumentos que permitam encontrar condições suficientes nas quais a inovação se espalha ou não com probabilidade positiva. Isto envolve o estudo de modelos de percolação e do processo de contato. / The purpose of this work is to combine percolation and contact process topics to formulate and achieve results in a particle system model that is inspired by the diffusion phenomenon of an innovation in a structured population. More precisely, we proposed a continuous time Markov chain defined in a population represented by the d-dimensional integer lattice. Each agent of population may be in any of the three states belonging to the set {0; 1; 2}. In this model, 0 stands for ignorant, 1 for aware and 2 for adopter. The arguments, that allow to obtain sufficient conditions under which the innovation either becomes extinct or survives with positive probability, will be studied. This involves the study of percolation models and contact process.
13

Propriedades cr?ticas de sistemas fora do equil?brio via simula??o Monte Carlo

Silva, Marcelo Brito da 02 August 2013 (has links)
Made available in DSpace on 2014-12-17T15:15:00Z (GMT). No. of bitstreams: 1 MarceloBS_TESE.pdf: 1282048 bytes, checksum: fb344c5ca563e7fc0032c38d8cab9256 (MD5) Previous issue date: 2013-08-02 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Nos ?ltimos anos, propaga??es epid?micas t?m sido alvo de muitos estudos baseados nos m?todos da F?sica Estat?stica. As din?micas desses processos epid?micos, tipicamente de n?o equil?brio, resultam na competi??o entre indiv?duos infectados (ativos) e indiv?duos saud?veis (inativo). Estes sistemas de n?o-equil?brio possuem um estado ativo estatisticamente estacion?rio, que representa a persist?ncia da epidemia, e um estado absorvente que reflete o fim da epidemia. ? a transi??o entre estes estados (ativo e inativo) que nos permite a an?lise cr?tica desses sistemas. Neste contexto, esta tese investiga dois destes processos, onde o primeiro deles corresponde a uma generaliza??o para o processo de contato em uma cadeia linear. Neste modelo, cada par de s?tios est? conectado com probabilidade P(r) que decai com a dist?ncia entre os s?tios r da forma 1/r&#945;. O modelo permite uma varia??o cont?nua entre a cadeia unidimensional padr?o, caracterizada por liga??es apenas entre primeiros vizinhos (&#945; &#8594; &#8734;), at? uma rede completamente conectada (&#945; = 0) caracterizada por comportamento de campo m?dio. Desenvolvemos an?lise de escala de tamanho finito para obter o ponto cr?tico e o conjunto de expoentes cr?ticos para distintos valores do expoente de liga??o &#945;. Dados do par?metro de ordem colapsam em uma curva universal. Mostramos tamb?m que os expoentes cr?ticos variam continuamente com &#945;. No segundo trabalho, introduzimos o modelo processo epid?mico superdifusivo, onde indiv?duos saud?veis (A) e infectado (B) podem saltar com distintas probabilidades (DA e DB respectivamente) sobre um dist?ncia &#8467; distribu?da de acordo com uma probabilidade tipo lei de pot?ncia P(&#8467;) = 1/ &#8467;?. Para ?&#8805;3 a propaga??o equivale a difus?o normal, e para ?<3 corresponde aos voos de L?vy. No regime de difus?o DA > DB, resultados da teoria de campo tem sugerido transi??o de primeira ordem, conjectura esta n?o endossada por v?rios estudos num?ricos. Realizamos um extensivo estudo num?rico do comportamento cr?tico de ambos os regimes, difusivo (?&#8805;3) e superdifusivo (?<3), para o caso em que DA > DB. Aplicamos an?lise de escala de tamanho finito para obter as propriedades cr?ticas inerentes ao modelo para v?rios valores de ?. A an?lise do modelo indica uma transi??o de fase de segunda ordem com expoentes cr?ticos variando continuamente

Page generated in 0.0591 seconds